IEA Heat Pump Symposium at Chillventa 2012

8 October 2012, Nürnberg

Ground Source Heat Pump systems for large commercial buildings in Central and Southern Europe

Burkhard Sanner

European Geothermal Energy Council, Brüssel

Large GSHP

Ground Source Heat Pumps (GSHP) for high capacity require:

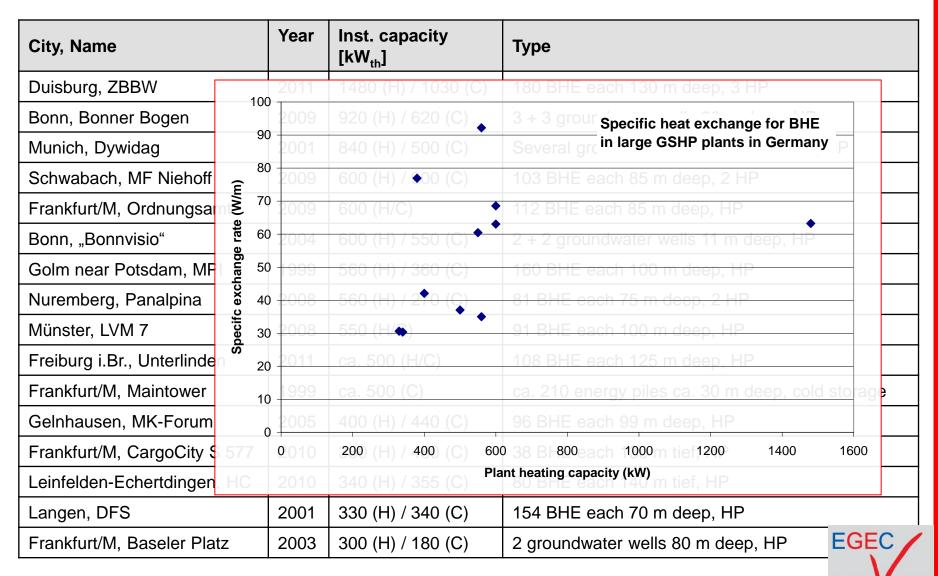
- holistic design approach for building HVAC system and ground system
- balanced ground-side energy turnover
- adequate ground-side installations
- sophisticated control system for the whole installation

GEOTHERMAL

Large GSHP

A specific challenge for large plants with borehole heat exchangers (BHE) is drilling in given timeframe.

Drilling with 3 rigs simultaneously near Frankfurt/Main (Project designed and supervised by UBeG, www.ubeg.de)



GEOTHERMAL

City, Name	Year	Inst. capacity [kW _{th}]	Туре	
Duisburg, ZBBW	2011	1480 (H) / 1030 (C)	180 BHE each 130 m deep, 3 HP	
Bonn, Bonner Bogen	2009	920 (H) / 620 (C)	3 + 3 groundwater wells 28 m deep, HP	
Munich, Dywidag	2001	840 (H) / 500 (C)	Several groundwater wells for 500 m ³ /h, HP	
Schwabach, MF Niehoff	2009	600 (H) / 900 (C)	103 BHE each 85 m deep, 2 HP	
Frankfurt/M, Ordnungsamt	2009	600 (H/C)	112 BHE each 85 m deep, HP	
Bonn, "Bonnvisio"	2004	600 (H) / 550 (C)	2 + 2 groundwater wells 11 m deep, HP	
Golm near Potsdam, MPI	1999	560 (H) / 360 (C)	160 BHE each 100 m deep, HP	
Nuremberg, Panalpina	2008	560 (H) / 270 (C)	81 BHE each 75 m deep, 2 HP	
Münster, LVM 7	2008	550 (H/C)	91 BHE each 100 m deep, HP	
Freiburg i.Br., Unterlinden	2011	ca. 500 (H/C)	108 BHE each 125 m deep, HP	
Frankfurt/M, Maintower	1999	ca. 500 (C)	ca. 210 energy piles ca. 30 m deep, cold storage	
Gelnhausen, MK-Forum	2005	400 (H) / 440 (C)	96 BHE each 99 m deep, HP	
Frankfurt/M, CargoCity S 577	2010	380 (H) / 480 (C)	38 BHE each 130 m tief, HP	
Leinfelden-Echertdingen, HC	2010	340 (H) / 355 (C)	80 BHE each 140 m tief, HP	
Langen, DFS	2001	330 (H) / 340 (C)	154 BHE each 70 m deep, HP	
Frankfurt/M, Baseler Platz	2003	300 (H) / 180 (C)	2 groundwater wells 80 m deep, HP	

European Geothermal Energy Council

GEOTHERMAL

European Geothermal Energy Council

GEOTHERMAL

County administration in Gelnhausen, "Main-Kinzig-Forum"

Cooling from BHE 440 kW

Heating from HP 400 kW

• 96 BHE each 99 m deep

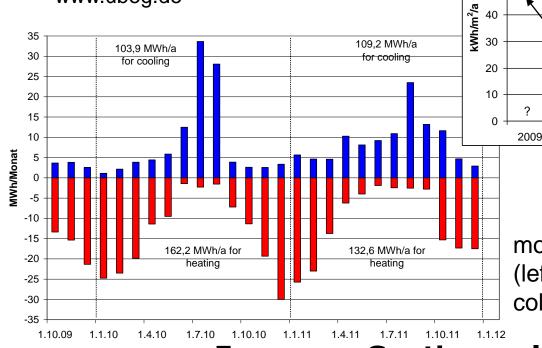
Operational since 2005

GEOTHERMAL

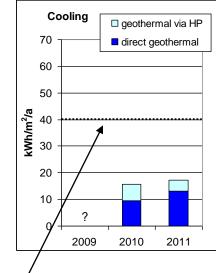
Office Building "PLDS", Wetzlar

- Cooling from BHE 140 kW
- Heating from HP 200 kW
- 30 BHE each 110 m deep

Operational since 2005



GEOTHERMAL


Office Building "PLDS", Wetzlar

Monitoring funded by German BMWi for 2008-2011:

- Univ. Hannover (LUH)
- UBeG GbR, Wetzlar www.ubeg.de

GEOTHERMAL

dotted lines: design values

monthly heat extraction and injection (left) and specifc heat and cold supply (above)

EGEC /

European Geothermal Energy Council

Heating

60

geothermal heat pump

2010

201

"Low-Energy Office" building near Frankfurt/Main:

• Usable area 57.800 m²

Cooling from BHE 340 kW

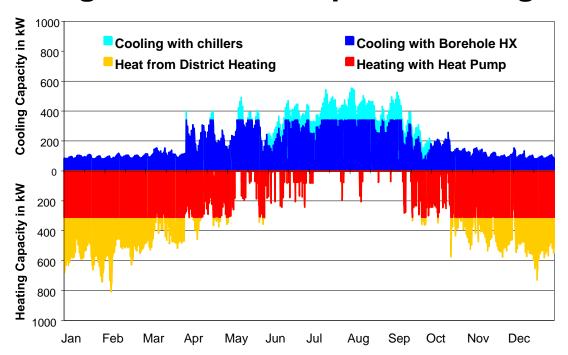
Heating from HP 330 kW

• 154 BHE each 70 m deep

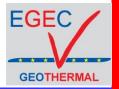
Operational since 2001

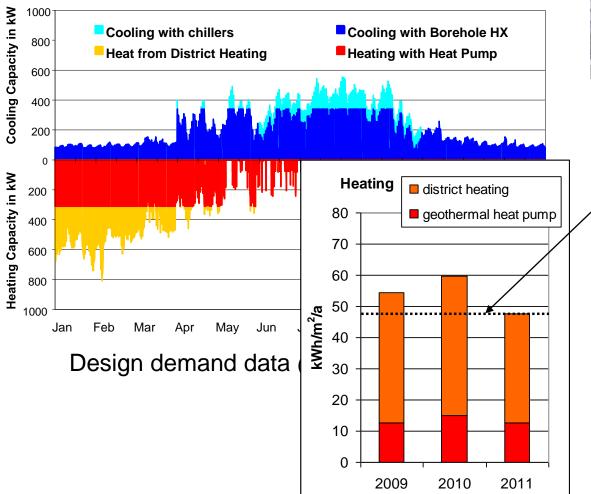
Monitoring funded by German BMWi for 2008-2011:

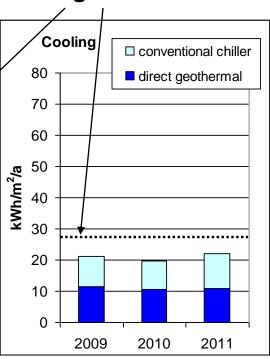
- Univ. Hannover (LUH)
- UBeG GbR, Wetzlar www.ubeg.de


 $5 \times 20 \text{ BHE (100)}$

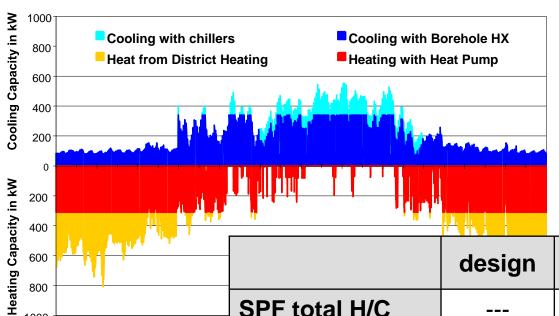
0 5 10 m


3 x 18 BHE (54)


Schematic of BHE fields


Design demand data (Seidinger et al., 2000)

dotted lines: design values



Monitoring results for 2009-2011 (Bohne et al., 2012)

EGEC

GEOTHERMAL

A Laplace Control of the Control of		design	2009	2010	2011
Jan Feb Mar Apr Ma Design demand	SPF total H/C		8.2	7.1	7.9
	SPF heating	5	6.5	5.6	6.1
	SPF cooling	> 8	9.9	9.9	12.0
	geoth. share heat	75 %	23.1 %	25.3 %	26.3 %
	geoth. share cold	82 %	53.6 %	54.0 %	49.5 %

Monitoring results for 2009-2011 (Bohne et al., 2012)

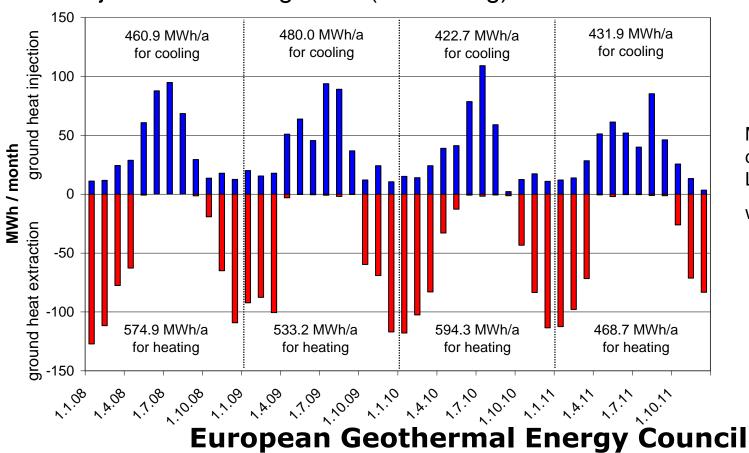
European Geothermal Energy Council

800

1000

Use of monitoring for the validation of design tool EED:

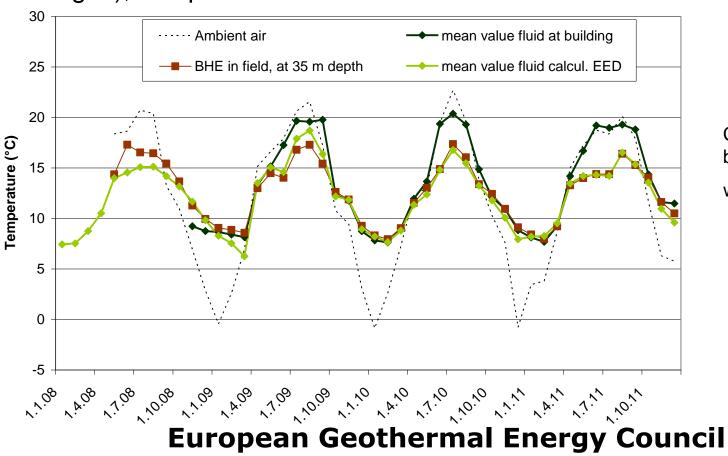
- Using EED for calculating annually differing heat loads is only possible in plants with quasi-balanced energy flows at the ground side. In such cases, the surrounding ground temperature will be relatively stable over the years.
- For the ground thermal parameters of DFS Langen, values from first
 - Thermal Response Tests (TRT) in Germany in 1999 and 2000 could be used
- For undisturbed ground temperature, the measured temperature from observation wells of 12.7 °C was assigned as the mean value over BHE depth


TRT in Langen in 2000

Validation of design tool EED:

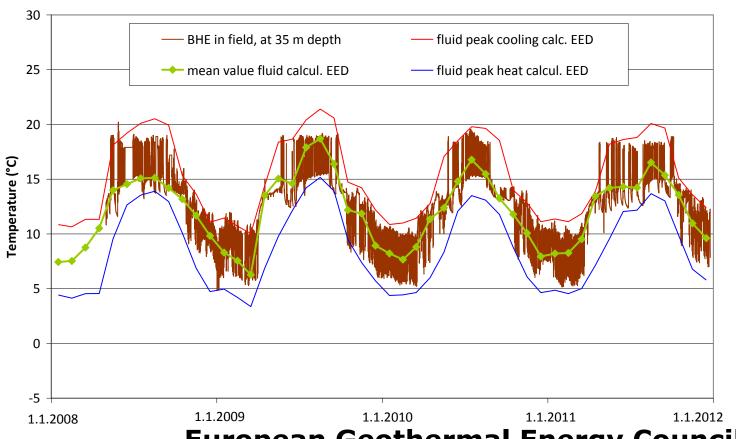
 monthly heat extraction from the ground (for heating) and injection into the ground (for cooling)

Monitoring data from LUH/UBeG


www.ubeg.de

Validation of design tool EED:

 measured temperatures in ambient air and in the BHE (monthly averages), compared with EED-calculation of BHE


Calculation by UBeG www.ubeg.de

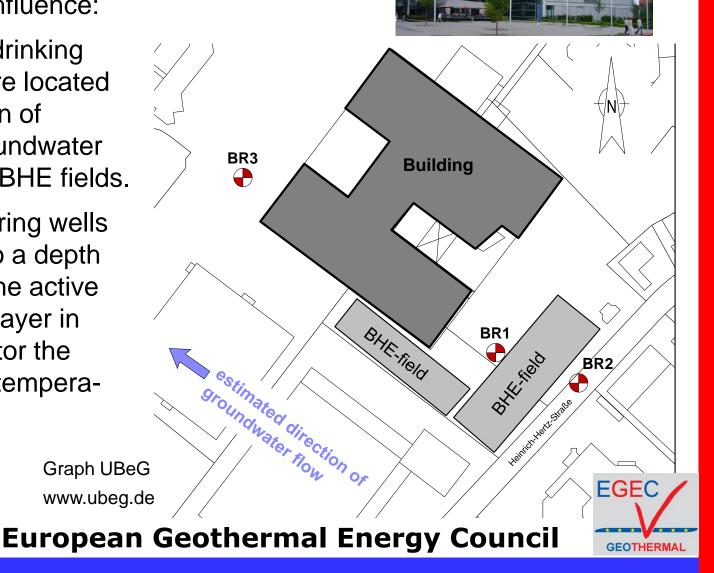
Validation of design tool EED:

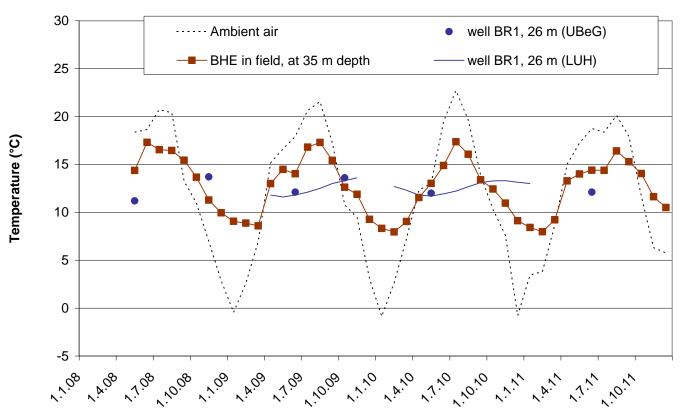
 measured temperatures in the BHE (hourly values), compared with EED-calculation of BHE

Calculation by UBeG www.ubeg.de

Validation of design tool EED:

- EED could be validated as an easy design tool also for larger BHE fields
- For projects with groundwater influence, numerical simulation of both conductive and advective heat transport is required

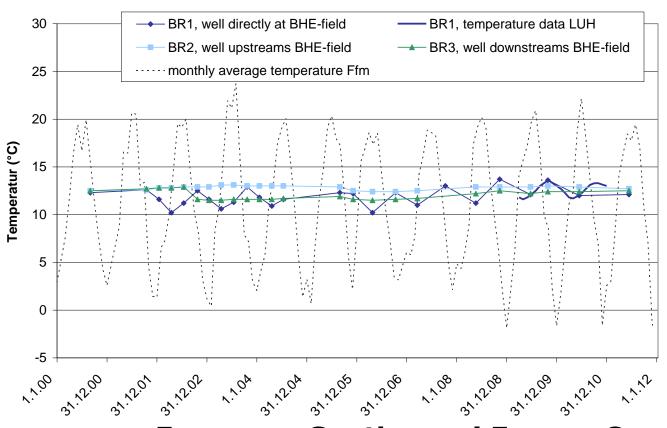



Groundwater influence:

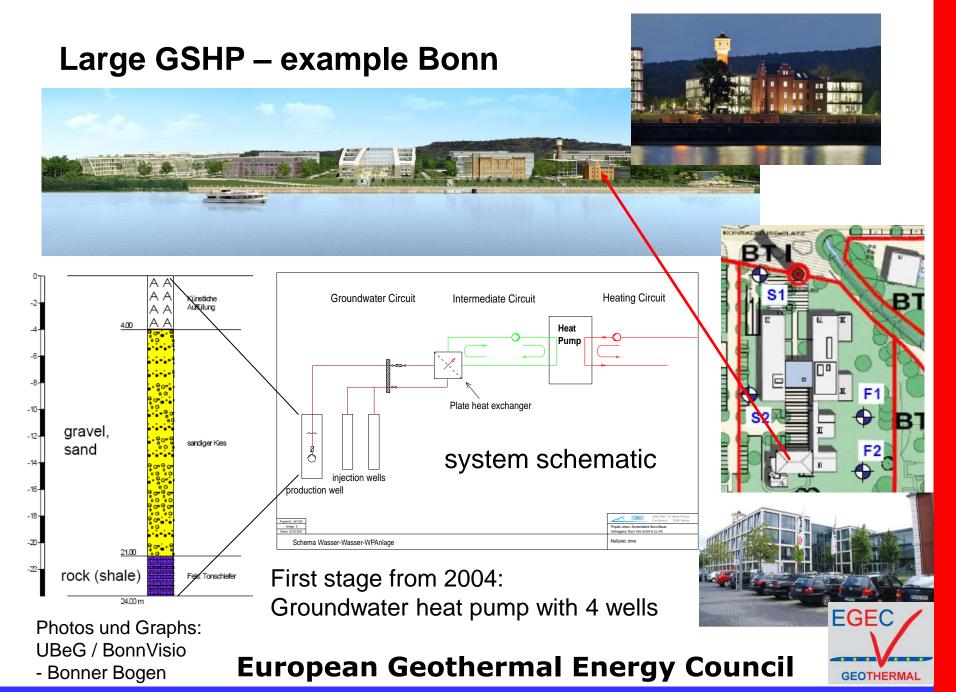
- A number of drinking water wells are located in the direction of assumed groundwater flow from the BHE fields.
- Three monitoring wells were drilled to a depth of 26 m into the active groundwater layer in order to monitor the groundwater temperatures.

Groundwater influence:

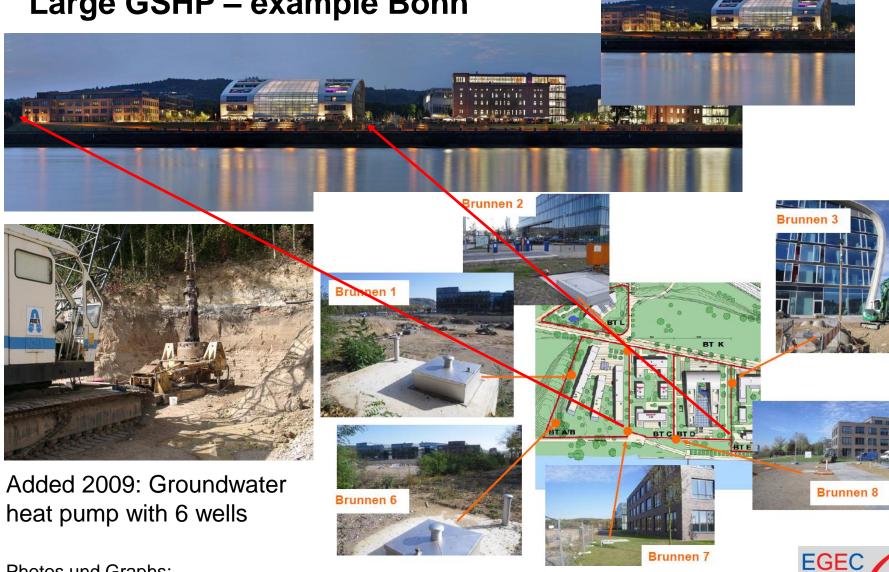
 Temperatures in well BR1 at 26 m depth in relation to temperature at BHE and temperature in ambient air (monthly average)



Graph UBeG www.ubeg.de

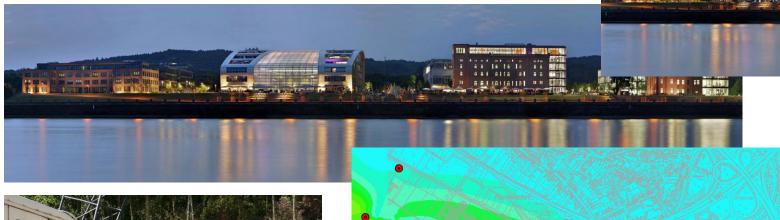

Groundwater influence:

Temperature development in wells BR1-BR3 since start of operation



Graph UBeG www.ubeg.de

Large GSHP – example Bonn



Photos und Graphs: UBeG / BonnVisio - Bonner Bogen

European Geothermal Energy Council

GEOTHERMAL

Large GSHP – example Bonn

Added 2009: Groundwater heat pump with 6 wells

Photos und Graphs: UBeG / BonnVisio - Bonner Bogen Large groundwater systems require numerical simulation for planning

Large GSHP – example Bonn

Providing about 1 MW baseload for heating and cooling

EGEC

GEOTHERMAL

Added 2009: Groundwater heat pump with 6 wells

Photos und Graphs: UBeG / BonnVisio - Bonner Bogen Well No. 8 -

Large GSHP in Europe

Country	City, Name	No. BHE	Depth BHE	Total BHE
NO	Lørenskog, Nye Ahus hospital	350	200 m	70'000 m
NO	Oslo, office/flats Nydalen	180	200 m	36'000 m
SE	Lund, IKDC / Chemical Inst.	153	230 m	35'190 m
SE	Stockholm, Vällingby Centrum	133	200 m	26'600m
SE	Stockholm, Kista Galleria	125	200 m	25'000 m
SP	Mollet de Valles, hospital	138	145 m	20'000 m
TR	Istanbul, Ümraniye mall	208	41-150 m	18'327 m
HU	Törökbálint, Pannon GSM	180	100 m	18'000 m
SE	Stockholm, flats Blackeberg	90	150 m	13'500 m
NO	Oslo, offices Alnafossen	64	200 m	12'800 m
SE	Örebro, music school	60	200 m	12'000 m
HU	Páty, Verdung logistics center	120	100 m	12'000 m
BE	Melle, office EANDIS	90	125 m	11'250 m
СН	Zurich, Grand Hotel Dolder	70	150 m	10'500 m
PL	Rudy, Zisterzian monastry	100	100 m	10'000 m

EGEC GEOTHERMAL

Large BHE project in Romania

Contraction of the contraction o

Porsche-showroom Bucharest West 2

Metallic construction - total area 3'507 m²

Heating load: 308 kW_{th}

Cooling load: 313 kW_{th}

DHW: 200 kWh_{th}/day

Fresh air flow: 3000 m³/h

Data and photos: ASA

Large BHE project in Romania

Porsche-showroom Bucharest West 2

Building equipment:

 17 water-to-water and 12 water-to-air heat pumps (Florida Heat Pump), using R410A

 750 m² of special surfaces of under-floor piping system for heating and cooling

 Ventilation channels connected to several water-to-air heat pumps, located mainly in the false ceilings of the building

Ground side equipment:

 128 BHE each 70–75 m deep under a field of 3'500 m²

Data and photos: ASA

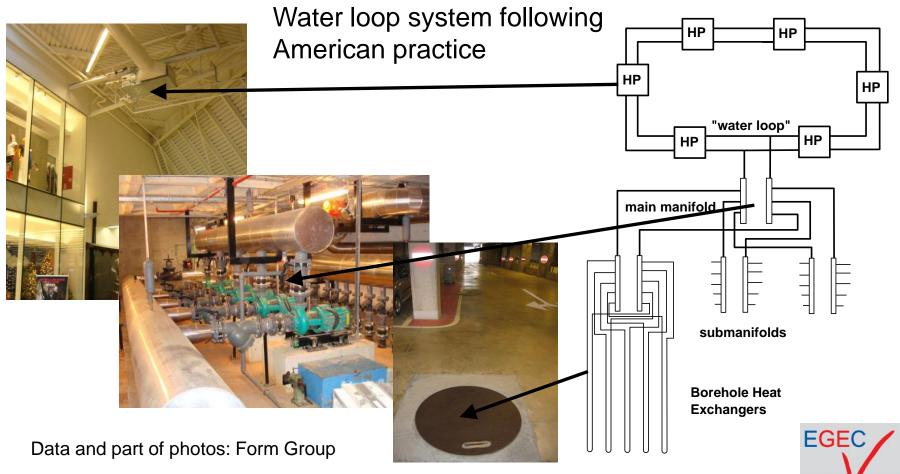
GEOTHERMAL

Large BHE project in Turkey

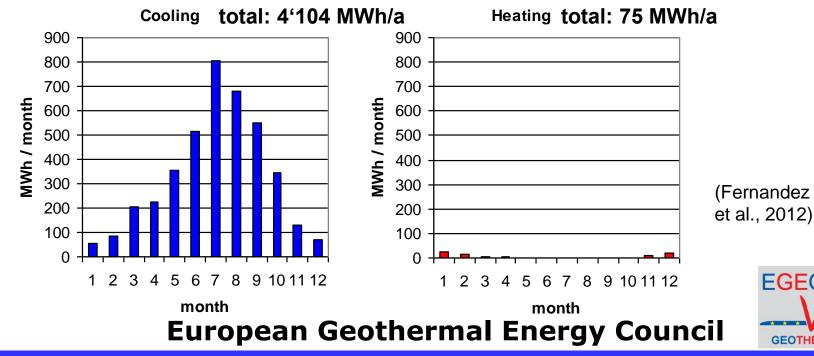
Umraniye Meydan Shopping Center (Metro), Istanbul

208 BHE, 40-150 m deep (average 88 m)

1 MW heating and cooling, hybrid



Large BHE project in Turkey

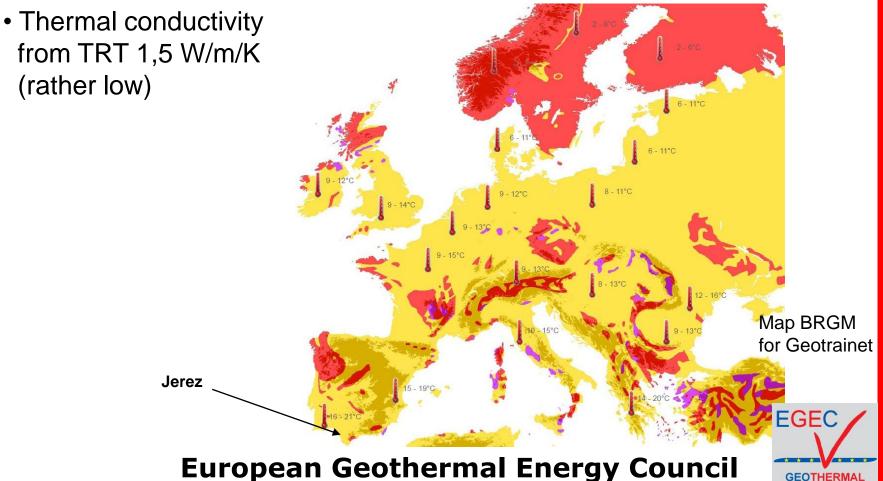

Umraniye Meydan Shopping Center (Metro), Istanbul

GEOTHERMAL

New retail outlet in Jerez de la Frontera, Spain

- Climate: mild winters and very hot and dry summers
- 17.7 °C annual average air temperature
- Cooling demand by far exceeds heating demand
- Seasonal storage is hardly feasible, with mean temperatures in winter not lower than 10 °C

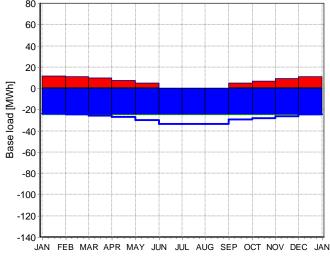
vain


New retail outlet in Jerez de la Frontera, Spain

- Design constraints:
 - From economic considerations, there were some constraints: maximum number of BHE limited to 50 maximum BHE surface occuppied around 4'500 m² maximum total length of BHE 6'500 m
 - The main design task was to achieve 56 tons of reduction in CO₂ emissions as compared to other renewable energy sources
 - Another important design task was to check what would be the maximum cooling that could be provided by a BHE-field of the given size.

New retail outlet in Jerez de la Frontera, Spain

Undisturbed underground temperature 19.8 °C


GEOTHERMAL

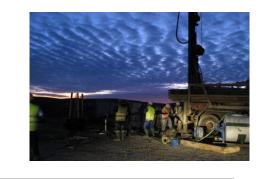
New retail outlet in Jerez de la Frontera, Spain

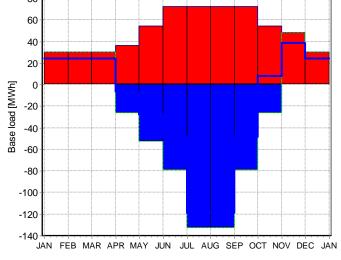
- Standard approach (all heating in winter, baseload cooling all year)
- Only about 7 % of the annual cooling demand of >4 GWh could be covered by the geothermal system that way

GEOTHERMAL

	Building supply	BTES coverage	expected SPF	BTES inj./extr.
Heating	75 MWh/a	100 %	5	60 MWh/a
Cooling	300 MWh/a	7 %	3	450 MWh/

New retail outlet in Jerez de la Frontera, Spain


- Possible recooling at night in July
 => use all available cold below BHE temperature!
- 35 expected temperature development around BHE during GSHP operation 30 Temperature (°C) 7 K difference 7 K difference 9 K difference 15 average undisturbed ground temperature around BHE (before GSHP operation) 10 21 July



New retail outlet in Jerez de la Frontera, Spain

- Innovative approach (all heating in winter, recooling in winter, peak cooling in summer, night recooling in summer)
- Now about 13 % of the annual cooling demand of >4 GWh could be covered by the geothermal system

GEOTHERMAL

	Building supply	BTES coverage	expected SPF	BTES inj./extr.	
Heating	75 MWh/a	100 %	5	60 MWh/a	
Cooling	530 MWh/a	7 %	3	795 MWh/EGE	

New retail outlet in Jerez de la Frontera, Spain

- Innovative design concept, adapted to Mediterranean climate and combining both diurnal and seasonal cold storage
- In summer, the underground works as a store of cold during the night and as a sink of heat during the day (diurnal storage)
- In wintertime, the regular operation of the heat pump delivers cold, and additional cooling (or re-cooling) is done by dry cooler (seasonal cold storage)
- The cooling output from BHE can be increased sustainably

• First operational experiences are encouraging and show that the

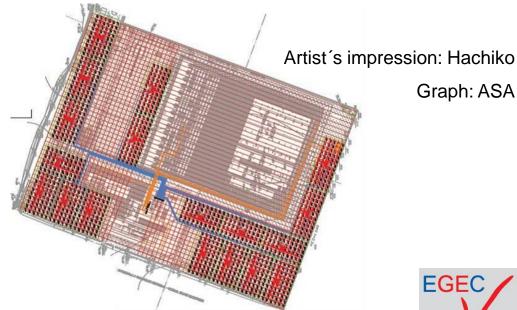
systems runs correctly

GEOTHERMAL

Very large BHE project in Romania

Extreme Light Infrastructure Nuclear Physics Facility (ELI-NP) at the Horia Hulubei National Institute of Physics and Nuclear Engineering in Măgurele, Romania

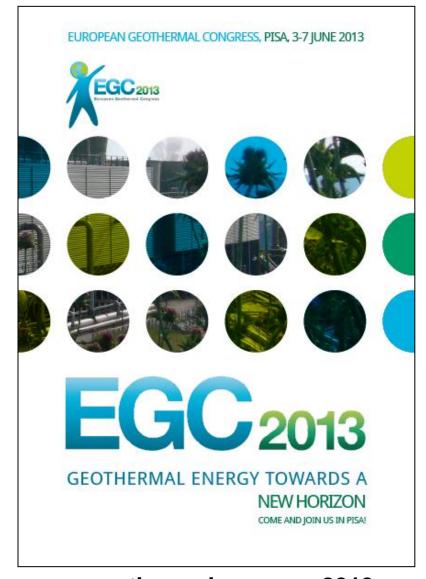
- European research center with the goal to generate laser pulses with 10 petawatts (10 billion MW) of power (for very short time)


GEOTHERMAL

Very large BHE project in Romania

Extreme Light Infrastructure Nuclear Physics Facility (ELI-NP) at the Horia Hulubei National Institute of Physics and Nuclear Engineering in Măgurele, Romania

- Heating and Cooling in the 4-MW-range by a BHE-field with a number of BHE in the order of 1000 boreholes!
- Drilling planned to start end of 2012



Graph: ASA

Thank you for your attention...

...and be invited to EGC 2013 in Pisa!

more information: www.egec.org

www.geothermalcongress2013.eu

