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Abstract 

Energy efficiency in the built environment has been identified as one of the key enabling technologies to meet 

global climate change targets. In this paper, we present promising results from a black box method to automatically 

characterize various aspects of heat pump operation in residential settings. Experimental data is gathered from heat 

pumps used to provide spatial heating and domestic hot water in recently refurbished net-zero energy houses. This 

is done by data-driven determination of the heat pump’s performance and the impact of building occupants. These 

interactions, typically in the form of hot water consumption profiles and preferences for temperature set points, 

are learnt from sensor data. This allows the formulation of an explicit Markov Decision Process (MDP), which 

can be solved with the objective to maximize energy efficiency of local heat pump operation. In doing so, we show 

substantial gains over default policies (grounded in thermodynamics) but which don’t consider occupant 

behaviour. Three key short-term benefits are envisaged from this research: first, leveraging such synergies allows 

the energy efficiency of heat pump operation to be improved by, on average, more than 10%. Second, automation 

unlocks the potential to circumvent the costly, non-generalizable model building step in model predictive control. 

Finally, it allows direct, unbiased benchmarking of theoretical performance of different types of heat pumps against 

real world performance. 
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1. Introduction 

Policy instruments and increasing public awareness have created amenable conditions for energy efficiency 

measures and renewable energy sources [1, 2]. These measures and renewable sources are also becoming an 

increasingly economically viable option [3]. For the aging residential built environment, responsible for about 

27% of the European energy demand [4], this has meant an accelerating proliferation of net-zero energy buildings 

(NZEB). These are grid-connected buildings that, typically over the course of a year, consume as much energy as 

they produce [5].  Frequently, NZEBs make heavy use of energy efficiency measures such as improved façade 

insulation techniques and higher efficiency heating mechanisms (e.g. heat pumps). This has the desirable side 

effect of driving these buildings towards complete electrification, severing the direct fossil fuel connection in its 

entirety (this argument disregards grid electricity generated using fossil fuels). 
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Research has shown however that these high efficiency buildings may not be the solution for efficiency standards 

as once hoped for. Theoretically designers of very high efficiency buildings in particular have often overestimated 

their efficiency in real life situations [6, 7]. This is primarily because manufacturers, in their quest for ever-

increasing efficiency, have focused almost exclusively on thermodynamics and treated the human interaction 

component as a secondary concern. There have historically been good reasons for doing so. Thermodynamics is 

predictable and well-understood; the climate conditions prevalent in a geographical location are also stable with 

daily and seasonal patterns. On the other hand, human demand demonstrates substantial stochasticity [8]. This 

complicates optimizing for such behavior in the absence of additional information. With the rise of internet of 

things, this is now becoming possible. 

Even if occupant behavior were to be known in advance, there is an additional problem in using traditional optimal 

control methods such as model predictive control (MPC) however. MPC techniques require the existence of known 

models for the heating systems involved [9, 10]. This means that models would be required for both the heat pump 

and the storage medium it is providing energy to (e.g. a hot water vessel or a building). Such model learning (or 

calibration) is an expensive, human-intensive step. Also, since there is no active learning in MPC, any errors in 

the model building process persist for the lifetime of the operational phase. Furthermore, MPC can’t scale to the 

millions of different device configurations worldwide.  

We present what we believe to be the first truly online framework capable of learning heat pump behavior and the 

systems it interacts with, demonstrated in real world settings. The framework, after having learnt such a model, is 

capable of solving for multiple objectives such as energy efficiency and price based optimization. Given only a 

standard set of sensors, the system is able to learn the dynamics of the system in real-world conditions and 

generalize to states never seen before. It is also able to improve the energy efficiency of the system, and can 

potentially offer these residual energy gains as flexibility to the electricity grid in case of need for demand response. 

By making optimization occupant-driven, the system reaches the highest possible energy efficiency and improves 

thermodynamic gains. These research findings can also be used to inform the dimensioning of such systems for 

future buildings and to identify possible improvement in the heat pump design itself.  

2. Methodology 

In this paper, we present a model-based reinforcement learning framework to automatically characterize and 

optimize the operation of heat pumps used for providing spatial heating as well as hot water. The heat pumps under 

consideration are air source heat pumps connected to recently refurbished, net-zero energy residential buildings, 

each equipped with a 200 litre storage vessel. Additionally, each heat pump is equipped with a 2kW booster heater. 

However, being data-driven, the proposed framework is independent of the specific heat pump technology or the 

type of building and storage vessel it is providing energy to. 

Model-based reinforcement learning generally consists of two iterative steps: learning and planning. Learning is 

the process of building a model for the system dynamics and its interactions with the environment and the 

reinforcement learner (also termed the agent). It usually consists of two steps: first, features are extracted from the 

time series data and, second a regression model is trained on the extracted features. The choice of regression model 

is problem-dependent. A generative model learnt in this way can then be used to simulate future system behaviour 

given arbitrary initial conditions and control actions. Once such a model has been learnt, optimization (planning) 

can take place. This optimization takes the form of generating many future scenarios (roll-outs) and then choosing 

the sequence of control actions that maximizes some objective function. 

In model-based reinforcement learning, the quality of the model used for planning defines the quality of optimal 

control. Since the regression model is data driven and not grounded in thermodynamics, two sources of error can 

cause inaccurate predictions, (1) stochasticity inherent to the time series (from measurement noise etc.) and (2) 

sampling artefacts (from limited state space exploration). The effect of the latter decreases as the model collects 

more experiences through its interaction with the system. Alternatively, explicit exploration strategies can drive 

the system to unknown states to improve the quality of the model. The former – system stochasticity – depends on 

relevant influencing variables not being observed etc. and can only be improved up to a constant, after which the 

model quality doesn’t improve. In the following, we describe these ideas in greater detail. 

2.1. Learning phase 

The learning problem encompasses more than just function approximation.  Representations for the heat pump, 

the storage vessel and the building itself have to be learnt. Just as importantly, future occupant behaviour has to 

be predicted. Additionally, how these states are estimated during the operational phase also has to be considered 

(i.e. what data is available and how reliable it is). The representations learnt are somewhat dependent on the 



Hussain Kazmi / 12th IEA Heat Pump Conference (2017) O.1.3.2 

3 

 

objective function to be optimized. For instance, if the objective is to optimize for energy efficiency, we don’t 

concern ourselves with the power profile of the heat pump; on the other hand, if the objective were to maximize 

the share of solar energy in heat pump operation, such a power profile would be useful.  

To formulate the problem as a reinforcement learning task, we first formalize the notion of a Markov Decision 

Process (MDP) [11]. An MDP can be completely specified by the tuple containing x, an estimate for the state; u, 

the control action executed by the agent; T, the transition function defining the system and environment dynamics 

and R, the reward stream that an agent can expect to receive. We define each of these terms in greater detail next 

for both the case of the hot water vessel and the building’s thermal mass. 

 

1. State, x 

Storage vessel. The storage vessel’s state can theoretically be quantified with its energy content at any given time. 

Since the energy content in the vessel is not directly observable, we use the temperature of the water as a proxy 

for this state. An additional complexity arises here because in most real world scenarios domestic hot water vessels 

are equipped with only a single sensor. This single sensor fails to provide adequate information about important 

stratification effects in the vessel. Thus, researchers have frequently resorted to offline model learning due to 

lacking information on the state of the system and the nonlinear vessel dynamics (e.g. thermodynamic and mixing 

losses, stratification effects etc.). At any given time, the storage vessel state is given by eq. 1, where i is the amount 

of time since the last reheat cycle, E is the energy provided to the vessel at that time and W is the water consumption 

pattern. For this state estimate, a hot water flow meter and a temperature sensor mounted anywhere inside the 

vessel (preferably above midway point) is required. 

𝑥𝑣 =  [𝑊𝑣
𝑡 ∶ 𝑡−𝑖 ,   𝑇𝑎𝑚𝑏

𝑡 , 𝑇𝑣
𝑡 , 𝐸𝑣

𝑡−𝑖]  (1) 

Building thermal mass. Using (thermostat) temperature in a building to quantify its current state is – at least 

cosmetically – very similar to the vessel case. As in the case of a water vessel, there are spatial temperature 

differences in a building’s temperature as well. A controller solely relying on the thermostat temperature to execute 

its control actions while being oblivious of the geometry of a building will fail to consider temperature differences 

inside a room because of possible solar gains and infiltration or transmission losses. There are however more 

subtle, complicating differences while controlling a building’s thermal mass. Occupants seldom concern 

themselves with what the exact energy content of their storage vessel is, as long as the water at the outflow exceeds 

a certain threshold. However, they are very much engaged with the temperature in their living area. This means 

that state variations allowed in building’s thermal mass have to be constrained to much tighter bounds. 

Furthermore, while hot water draws are sporadic, thereby allowing another dimension of flexibility, room 

thermostat temperatures have to constantly lie within the same reasonable temperature bounds. The state for the 

building thermal mass can be defined as in eq. 2, where i is the number of previous room temperature recordings 

considered for the prediction. 

𝑥𝑏
𝑡 =  [𝑇𝑎𝑚𝑏

𝑡 , 𝑇𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡
𝑡 , 𝑇𝑠𝑜𝑙𝑎𝑟

𝑡 , 𝑇𝑟𝑜𝑜𝑚
𝑡−1 ∶ 𝑡−𝑖]  (2) 

Occupant behaviour and ambient temperature. The occupant’s state is completely unknown in this problem, and 

it is only through the (usually infrequent) interactions with thermostats or hot 

water draws that their effect on the system can be estimated. The ambient 

temperature, on the other hand, is very well recorded for most inhabited 

locations and predictions can be obtained from a host of web-services. The 

ambient temperature is important in the state formulation because it affects both 

the heat losses and the coefficient of performance of the heat pump. 

 

Heat pump. The heat pump can, at any given time, be in one of three possible 

states.  It can either be idle or activated; however if it is in active mode then it 

can further be providing warmth to the building itself or heating up the hot 

water storage vessel: 

 

2. Action, u 

The reinforcement learner (agent) controls the heat pump to decide when to switch between its allowed states (idle 

to active etc.). Should the need arise to provide both draws at the same time (e.g. in winter), the agent should 

theoretically make the optimal choice between hot water and spatial heating automatically. However, there are 

default overrides in the heat pump system under consideration which always prioritize hot water over spatial 

Heat pump state

Idle Active

Spatial heating

Hot water
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heating. In case only one or the other is required, the problem can be simplified to a binary decision problem. 

 

3. Transition function, T 

The transition function defines the state transitions, given an initial state, 𝑥, the agent’s control action, 𝑢, the 

influence of observed environmental influences, εo  (e.g. climate or occupant behaviour) and unobserved 

environmental influences, εn (stochastic dynamics and noise inherent to the system). 

𝑥′ = 𝑓𝑇(𝑥, 𝑢) + 𝜀𝑜 + 𝜀𝑛  (3) 

Storage vessel. The transition function depends on the current vessel state (i.e. the energy content embodied in the 

vessel presently), which in turn is a function of occupant behaviour (e.g. the consumption profile), and when and 

to what extent the storage vessel was reheated last. The transition function for the vessel state returns a temperature 

distribution over the entirety of the vessel volume, encapsulating both learnt stratification, as well as 

thermodynamic and mixing losses.  

 

Building thermal mass. The subsequent states for the building’s thermal mass show strongly correlated behaviour 

with past observations and climate fluctuations that define thermodynamic losses. At the same time however, 

occupant behaviour and preferences are hidden because of a lack of presence / motion detection sensors. Likewise, 

the opening and closing of windows is not observable making the state transitions quite stochastic given the 

observable variables. 

Heat pump. The heat pump’s state is defined by the control action it is taking. However, unlike an electric 

resistance heater, a heat pump usually has temporally correlated behaviour when reheating a building or the storage 

vessel. In this paper, we assume that time steps between subsequent control decisions are large enough to mask 

this dependence. 

 

4. Reward function, R 

The temporal reward stream, like the transition function, is derived from a function that depends on the state of 

the system and the control action applied (eq. 4).  

𝑟 = 𝑓𝑅(𝑥, 𝑢) + 𝜀𝑜 + 𝜀𝑛  (4) 

More concretely, given a system state and depending on the choice of objective function, one or more of the 

following functions are learnt: (1) the probability, p¸ of lost occupant comfort given the current system state and 

choice of an action, (2) the energy required, E, (in kWh) to reheat the storage vessel or building to a certain state, 

given an initial state, and (3) the power profile, P, the heat pump would follow to execute such an operation. 

Additionally, extrinsic rewards might be provided; one possibility for this is to provide an ‘exploration bonus’, e, 

to the agent in case a certain control action can improve either the reward or transition function model. A second 

possibility is to incorporate additional considerations deriving from market prices [12], flexibility signals [13] or 

time-of-use tariffs [14] etc. 

In all these, occupant comfort is the core constraint for all objectives, violation of which leads to a large negative 

reward. Efficiency and economy are usually of secondary concern to building occupants as evidenced by the low 

elasticity of electricity demand [15, 16]. 

2.2. Planning phase 

Once an appropriate representation of the MDP has been learnt, optimization can be performed. One possibility is 

to apply techniques from stochastic model-predictive control, assuming the learnt representation to be reasonably 

accurate and the only uncertainty arising from variations in occupant demand etc. However, this goes against the 

philosophy of a learning system that improves its representation over time. It could also lead to wildly optimistic 

or pessimistic control actions, depending on the arbitrary starting conditions used to learn the MDP. By 

interleaving learning with planning, it is possible to achieve all the core benefits of MPC without losing the 

flexibility of a reinforcement learning system. The simplest way to do this is through heuristics for the planning 

phase. Derivative-free optimization improves on these heuristics by expanding the search neighborhood and 

usually returning higher quality solutions. 

 

1. Heuristics 
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Heuristics for local optimization build off multiple notions of heat pump operation which are not usually optimised. 

The default behaviour usually follows one such rule-based mechanism which prioritises occupant comfort, but in 

a way that is oblivious to the environmental dynamics or occupant demand. Reheating the vessel or building every 

time the thermostat temperature falls below a certain threshold might ensure the occupant seldom suffers 

discomfort, but is also quite inefficient. The primary idea behind further optimizing this using the learnt MDP is 

to only reheat when necessary. This minimizes thermodynamic and ambient losses, and also forces the heat pump 

to operate with lower temperature water at the inflow, thereby further increasing the heat pump COP. By 

incentivizing reheat cycles when the ambient temperature (and consequently the heat pump COP) is higher, 

efficiency can be further increased. 

 

2. Derivative-free optimization 

Multiple heuristics for optimization using occupant demand and climate conditions can be derived, however these 

might lead to varying performance levels. As an example, COP is higher when temperature is usually higher so 

reheating at this time might reduce energy expenditure. However, reheating at this time could be unnecessary 

(based on historic occupant demand) and would lead to higher thermodynamic losses.  

This is just one example of the complexity of the reward landscape. The different reward streams and the nonlinear 

dynamics of the storage vessel and building mean that the problem is non-convex. In light of this, we use 

population-based metaheuristics to perform derivative-free optimization for planning using the learnt 

representations. If the objective is to maximize energy efficiency, then the optimizer initializes a large population 

of initial solutions (i.e. policies or sequences of control actions). This initialization can be random, drawn from a 

historic prior or based off heuristics. Afterwards, local neighbourhood search is performed. Different members of 

the population are responsible for diversification, while the additional search step corresponds to intensification. 

These two aspects can be handled by any meta-heuristic algorithm or combination of algorithms, such as genetic 

algorithms [17] and swarm intelligence [18] etc. This leads to a solution, which performs better at achieving the 

optimal control objectives than pure heuristics-based controllers while avoiding making linearizing assumptions 

that would be required for a more traditional optimization approach. 

2.3. Bringing it all together 

The intertwined learning and planning workflows take the following form for optimal control of both the storage 

vessel and the building’s thermal mass: 

 

The transition and reward function can be learnt with an appropriate choice of a function approximation algorithm. 

Neural networks offer one such possibility. A limitation of standard neural networks for regression is that they 

don’t return the mean and variance for the prediction. For this purpose, we can learn an ensemble of neural 

networks, which allows us to not just estimate the expected transition or reward but also the uncertainty around 

this prediction. This measure of uncertainty is important because it can help avoid making over-optimistic 

projections and guide future search (via exploratory incentives). In doing so, the proposed algorithm not only 

interleaves learning with planning, but it also incentivizes active exploration which improves the quality of optimal 

control over time. It is this combination that makes the proposed algorithm flexible enough to perform optimal 

control of any heat pump device. 

 

3. Results 
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The results section is divided into three parts: (1) learning the hot water systems; (2) learning the building thermal 

mass, and (3) an application to energy efficiency. 

3.1. Hot water 

In this section, we investigate the efficacy of the proposed system to learn the hot water vessel’s behaviour and its 

interactions with the occupant and the heat pump. 

 

1. Ambient losses and stratification effects 

Ambient loss from the vessel is primarily a function of the vessel state, ambient conditions and physical properties 

of the vessel. In this work, we estimate the ambient losses for a given vessel state based on measured data. 

Nonlinear dynamics of water mean that hot water rises to the top of the vessel because of differences in density, 

but there is also stratification inhibiting mixing between different layers. Learning this information is critical 

because, in the current regime of incomplete sensing, it might otherwise lead to over-estimates of hot water 

remaining in the vessel, thereby leading to lost occupant comfort. Fig. 1 illustrates the model’s representation for 

a vessel state given water flow of 100 litres after a reheat cycle to 50℃ for three different cases.  

 

Fig. 1. Stratification and thermodynamic losses, as learnt by the vessel model 

Variation in temperature shows the temperature drop with increasing water consumption from the storage vessel. 

The reduction in the starting temperature for the two curves (red and blue) identify the thermodynamic losses 

corresponding to an idle period of 12 and 24 hours. The shaded regions correspond to the uncertainty in the model’s 

prediction: the higher the uncertainty, the less certain the agent is in its state estimation or prediction. It is 

interesting to note that uncertainty is lowest for cases of low flow (i.e. uncertainty increases with consumption) 

and for less delay since the last reheat cycle (i.e. uncertainty increases as the time between consumption and reheat 

cycle increases). This is intuitive, since the agent learns its representation from occupant behaviour and it stands 

to reason that occupants will consume hot water before 24 hours have elapsed since the last reheat cycle. 

Nevertheless, the generalization potential is outlined and, given sufficient training data and a robust exploration 

strategy, the agent will be able to learn the correct representation. The reduction in uncertainty over time is given 

in Fig. 2. 
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Fig. 2. Temperature vessel model uncertainty reduction over time (the initial high confidence corresponds to neural network initialization 

parameters) 

2. Uncertainty during operation 

During physical operation of the storage vessel, a mid-point sensor is made available to both train the state 

transition model and also to serve as validation (for unseen data). Fig. 3 plots the observations against the 

predictions, with the shaded bars representing the uncertainty bounds around the prediction. 

 

Fig. 3. Predicted vs. observed water temperature in the storage vessel  

The error between observation and prediction is usually less than 0.5℃, which is close to the sensor’s tolerance, 

and almost always within the confidence bounds returned by the model. The model has learnt to predict sudden 

temperature drops also, corresponding to water consumption by the user. The uncertainty for these is usually higher 

than in more conventional states; however this means that next time the agent encounters such a state, its estimation 

and prediction capabilities will have improved. 

 

3. Energy consumption by the heat pump 

While the current vessel state embodies the energy content present inside the vessel, the electrical energy that 

would be required by the heat pump to reheat the vessel to an arbitrary temperature must be determined as well. 

This value represents both the electrical load that has to be minimized over a time horizon while ensuring user 

comfort, as well as the flexibility potential (capacity) that can be offered to the electric grid at any point in time.  
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Fig. 4. Predicted vs. observed energy consumption of the heat pump for hot water production 

Fig. 4a shows the results of this energy consumption learnt over time from real data, split into training and testing 

sets. The histogram of errors (Fig. 4b) shows that the prediction error is zero-mean and around 10% in mean 

absolute percentage error (MAPE) terms. 

3.2. Spatial heating 

In this section, we take a closer look at the proposed algorithm’s performance on thermal mass of buildings. 

 

1. Learning transmission losses, solar gains and the heat pump influence 

To demonstrate that the model has learnt an approximately accurate representation of the thermal mass of the 

building, the model predictions are compared with actual sensor observations over a week. This includes both the 

transmission losses to the ambient, as well as solar gains leading to temperature variations in the building. Fig. 5 

illustrates the results of the model as learnt from historic data. The shaded regions in the plot correspond to time 

periods in which the building was being heated up by the heat pump. The results are plotted out for two different 

houses, and illustrate one example where the model was able to accurately learn the building behaviour and another 

where it wasn’t. In the absence of more information, multiple hypothesis can be presented. One likely explanation 

is that in the first house, the temperature follows a periodic profile which the learner has been able to capture and 

makes correct temperature predictions. In the second house, the overall temperature variation is lower but more 

chaotic which means a learner predicting cyclic patterns fails. 
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Fig. 5: Predicted vs. observed temperature in two different buildings; ambient temperature is plotted for reference 

To investigate this matter further, we tried different parameterizations of learning methods, including linear 

regression, regularized polynomial regression, neural networks and a combination of multiple learning methods. 

We found that while a polynomial regression method worked quite well for most houses on average, however by 

combining multiple methods, we were able to improve the worst case performance at the cost of a slight reduction 

in average predictive performance. One reason why polynomial regression worked better than the neural network 

was because of limited amount of data used in training. The comparison is presented in Fig. 6. 

 

Fig. 6. Predictive performance comparison for multiple learning algorithms 

2. Heat pump energy consumption 

Similar to the issues encountered in learning a model for the building thermal state, the energy consumption 

prediction has to be made using incomplete sensor data. Fig. 7 shows the results of the model’s performance, again 

for two different houses with different consumption profiles. The R2 values for both houses are substantially 

different, indicating that while such black box models can accurately learn the behaviour for some houses, 

generalization might be trickier and further investigation into causal effects for this divergence is required. 

 

Fig. 7. Predicted vs. observed energy consumption of the heat pump for spatial heating 

3.3. Investigating energy efficiency 

As explained in section 2, once a reliable model for the system dynamics has been learnt, optimal control can be 

performed. This optimal control takes the form of searching through the action-space, given a certain starting state. 

Fig. 8 illustrates results of simulations for providing hot water, where occupant demand was simulated using 

historic data. Heuristics already demonstrate a sizable reduction in energy consumption over the default threshold-

based mechanism, however incorporating the complete reinforcement learning framework with derivative-free 

optimization leads to even greater savings. In our simulations, we were able to achieve close to 20% energy 
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efficiency gains. However, these rely heavily on the consumption profiles and the temperature defaults. It is 

therefore important to note here that energy efficiency gains achievable through such a system decrease with 

increasing hot water consumption and also with more relaxed occupant comfort bounds by default (in which case, 

the proposed system can improve occupant comfort at similar energy consumption levels). 

 

Figure 8: Simulated energy efficiency gains 

4. Conclusions 

In this paper we have investigated the feasibility of learning a heat pump’s behaviour in completely online settings. 

With no prior information about the heat pump, the storage vessel or building type it was connected to, we were 

able to learn a usable representation using sensor data. The sensor requirements for the proposed system are 

minimal, with no additional sensors installed beyond what comes with the default heat pump configuration. 

Furthermore, being a reinforcement learning system, over time the uncertainty in the system showed a downward 

trend: as the agent observed more data, its estimates and predictions improved. We have used these models to 

present a practical application by showing that optimization gains are possible by implementing the full 

reinforcement learning framework. Such systems can help further reduce the operational costs of heat pump 

systems, while also making them more amenable to being more active participants of the electricity grid by 

responding to imbalances and congestions. 
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