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Abstract 

Heat pumps represent ideal systems to exploit the energy flexibility potential of buildings and their 
embedded thermal storage possibilities, particularly when they are operated by intelligent management 
systems such as model predictive controllers (MPC). The present study proposes to evaluate in an 
experimental setup the performance of an MPC controller used to control an air-to-water, variable speed heat 
pump for a residential building. In particular, the impact of the forecast quality is investigated, since MPC 
relies on the access to forecasts of the disturbances (weather, price, occupancy…) to perform its 
optimization. Two experiments of three days were thus repeated, the first one with a real weather forecast 
retrieved periodically from a commercial service, while the second one considered a perfect forecast. In 
cooling mode, the case with imperfect forecast resulted in an increase of the electrical energy use of the heat 
pump of 5.8%, corresponding to a cost increase of 11.2%, compared to the case with perfect forecast. These 
experimental results highlight the importance of the forecast quality on the performance of model predictive 
controllers for heat pumps.
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1. Introduction

With the growing penetration of wind and solar plants in our energy mix, the need for demand-side 
flexibility is becoming more and more relevant to maintain a proper operation of the power grids. In particular, 
the heating and cooling loads of buildings can be regarded as flexible demand, since they can be shifted in 
time to a certain extent, by exploiting their embedded mass as thermal storage. Heat pump systems enable 
firstly to electrify this demand, and secondly to make it more flexible, if operated by smart controllers.  

In this regard, model predictive controllers (MPC) have shown a growing interest in recent years to exploit 
the energy flexibility of buildings [1]. Such control strategies rely on an optimization problem solved 
periodically, making use of a forecast of the external disturbances and a model of the dynamic systems to 
project their behavior over a certain finite horizon in the future, and thus find the optimal control sequence. 
MPC usually provides greater benefits in terms of savings, comfort or energy flexibility (depending on the 
chosen objective), than simpler strategies such as rule-based controls, even though its development costs are 
higher. The performance of MPC depends highly on its formulation, the reliability of the model used, and the 
accuracy of the disturbances forecast, which most commonly consists of weather predictions. About this last 
point, little literature was found about the influence of the forecast quality on the performance of MPC used in 
building climate control. A summary of existing articles and their learnings is presented hereafter.

The literature on the subject often uses a “performance-bound MPC”, sometimes also called “perfect MPC”, 
“optimal MPC” or “optimal policy”, as a benchmark for other control strategies [2]. It is an “idealized” MPC, 
which creates a perfect agreement between predictions and reality. Such studies are possible in computer 
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simulations where the future evolution of the exogenous parameters can be known beforehand, but could not 
be applied to field tests. It enables to see the upper limit of the benefits that MPC could ideally provide, if it 
had a perfect knowledge of the future. Mendoza-Serrano et al. [3] compared for instance different 
configurations, with the MPC provided either with a perfect forecast (full future information), either with zero 
future information. The first case lead to savings of 31% compared to a standard reference case, while the 
second one lead to savings of only 27%. The authors highlighted the fact that the savings strongly depend upon 
the level of information provided to the MPC algorithm. Similarly, Allen et al. [4] reported savings of -13% 
on the total energy costs with a perfect forecast, and -11% with an imperfect forecast. Rolando et al. [5]
developed a predictive rule-based control, and found that the system energy consumption was reduced of about 
15% when the control logic utilized the information of the perfect solar radiation forecast, over the entire 
heating season. Lazos et al. [6] also commented that weather variables are significant components of the 
evolution of building energy systems and minimizing the uncertainty in predicting their evolution can lead to 
significant savings, usually in the range of 15–30% compared to a deterministic and non-weather sensitive 
control approach. Lohr et al. [7] compared a controller when fed with a perfect forecast, or with the data of the 
previous day used as predictions for the next day (yesterday-based predictions). They found that the 
performance decreased only slightly, if historical data is chosen as forecast for the upcoming day, but the 
proposed controller performed well in both cases.

Most of the reviewed literature agrees on a significant influence of the forecast quality over the MPC 
performance. However, it remains unclear how much better the MPC can perform with a perfect knowledge 
of the future, compared to other imperfect methods used to predict the future evolution of the disturbances. In 
fact, a complete absence of knowledge of the future is as unrealistic as a perfect knowledge: since weather 
parameters have a certain inertia, and repeat daily and seasonal patterns, a certain approximation of the next 
day weather can always be estimated. Furthermore, most of the reviewed articles resorted to simulation work, 
and did not consider the application on real systems like heat pumps operated in a realistic setup. The present 
work intends to fill this gap by proposing a comparative study which shows the performance of an MPC 
controller on a real heat pump operated in a semi-virtual laboratory setup. The experimental nature of the study 
considers all practical aspects related to applying MPC as a heat pump supervisory control, and enables to 
obtain more realistic results than previous simulation-only work. In this study, the MPC was run firstly in real 
time, using weather forecasts updated every hour from a commercial service, while the current weather was 
also measured in parallel. In a second experiment, the recorded weather conditions were reproduced in a 
climate chamber where the heat pump outdoor unit is placed, also providing this information as a perfect 
forecast to the MPC controller. In this way, the performance of the MPC with a perfect or with an imperfect, 
but real-life forecast could be compared with the same boundary conditions.

2. Methods

2.1. Experimental setup: semi-virtual environment and heat pump system

The tests were performed in a semi-virtual environment setup in a laboratory, according to the schematic 
of Figure 1. The real heat pump is an air-to-water, reversible model of 11 kW capacity, able to regulate the 
speed of its compressor (variable speed). Its outdoor unit is placed in a climate chamber where the air 
temperature and relative humidity can be accurately controlled to reproduce the desired climatic conditions in 
a dynamic manner. Two thermal benches emulate the thermal loads from the building according to the 
simulation made in real time with the TRNSYS software: the first thermal bench emulates the space cooling 
load, by controlling the return temperature from the emission system that goes back to the heat pump. The 
other thermal bench schedules the tapping of DHW from the storage tank, according to a fixed and predefined 
schedule.
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Figure 1. Schematic of the laboratory setup, applying the concepts of semi-virtual environment and hardware-in-the-loop.

2.2. Study case and utilized models

The control configurations have been tested on a building study case representative of the climate of the 
Catalonia region in Spain. It is a flat of 110 m2 with 3 bedrooms, occupied by a family of 4 and conditioned 
by a circuit of eight Fan-Coil Units (FCU) supplied by the air-to-water heat pump. The flat is modelled in 
TRNSYS as a detailed white-box model. The occupation of the apartment is modelled stochastically, with a 
profile of the heat gains from people and equipment. The climate files used for the tests originate from a 
weather station situated in Tarragona (Spain), see also next section 2.4 about the forecasts on this matter. 

In the present case, only a period of the cooling season was chosen for the tests. In this configuration, the 
heat pump functions in cooling mode to provide space cooling (SC), and in heating mode to produce Domestic 
Hot Water (DHW) stored in an integrated tank. Only one mode is allowed at any time, with DHW having 
priority over SC. The experiments carried out cover three days of September 2018, from the 13th to the 15th

included, with a sufficiently high cooling load.

2.3. Model predictive controller

The controller tested in this study is a model predictive controller whose formulation is presented hereafter.
The MPC formulation is summarized in this section; for any doubt or for further details, the reader is referred 
to previous publications [8], [9], and to the nomenclature at the end of this paper.

Objective: min
𝑢𝑢,𝛿𝛿

𝐽𝐽 = [𝛼𝛼𝜀𝜀𝐽𝐽𝜀𝜀 + 𝛼𝛼∆𝑢𝑢𝐽𝐽∆𝑢𝑢 + (1 − 𝛼𝛼𝜀𝜀 − 𝛼𝛼∆𝑢𝑢)𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐]
Subject to, ∀𝑘𝑘 ∈ ⟦1,𝑁𝑁⟧:

Model:

{𝒙𝒙(𝑘𝑘 + 1) = 𝑨𝑨 ∙ 𝒙𝒙(𝑘𝑘) + 𝑩𝑩𝒖𝒖 ∙ 𝒖𝒖(𝑘𝑘) + 𝑩𝑩𝒆𝒆 ∙ 𝒆𝒆(𝑘𝑘)
𝒚𝒚(𝑘𝑘 + 1) = 𝑪𝑪 ∙ 𝒙𝒙(𝑘𝑘) 

Constraints on the inputs:

{
𝛿𝛿𝑆𝑆𝑆𝑆(𝑘𝑘) ∙ 𝑄𝑄𝑆𝑆𝑆𝑆 ≤ 𝑄𝑄𝑆𝑆𝑆𝑆(𝑘𝑘) ≤  𝛿𝛿𝑆𝑆𝑆𝑆(𝑘𝑘) ∙ 𝑄𝑄𝑆𝑆𝑆𝑆  
𝛿𝛿𝑇𝑇𝑇𝑇𝑇𝑇(𝑘𝑘) ∙ 𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇 ≤ 𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇(𝑘𝑘) ≤  𝛿𝛿𝑇𝑇𝑇𝑇𝑇𝑇(𝑘𝑘) ∙ 𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇

𝛿𝛿𝑆𝑆𝑆𝑆(𝑘𝑘) + 𝛿𝛿𝑇𝑇𝑇𝑇𝑇𝑇(𝑘𝑘) ≤ 1 
Constraints on the outputs:

{𝑇𝑇𝑖𝑖𝑛𝑛𝑛𝑛(𝑘𝑘) ≤  𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖(𝑘𝑘) + 𝜀𝜀(𝑘𝑘) 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝜀𝜀(𝑘𝑘) ≤ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑘𝑘) (𝜀𝜀 ≥ 0)
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The cost function is multi-objective: it combines a comfort objective 𝐽𝐽𝜀𝜀, a smoothing objective 𝐽𝐽∆𝑢𝑢 (which
aims at avoiding too frequent changes in the frequent actions), and a cost reduction objective 𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . These
conflicting objectives have been balanced by choosing appropriate values for the weighting coefficients 𝛼𝛼𝜀𝜀
and 𝛼𝛼∆𝑢𝑢.

The MPC controller projects the behavior of the systems on a horizon of 24 hours in the future (denominated 
𝑁𝑁), using a simplified model of the building. This model is a resistance-capacitance grey-box model which 
represents the building envelope and the capacity of the thermal mass of the building to store energy. The 
model is expressed here in a state-space format (matrices 𝐴𝐴, 𝐵𝐵𝑢𝑢, 𝐵𝐵𝑒𝑒 and 𝐶𝐶) , using two different kinds of
inputs: the vector 𝑢𝑢(𝑘𝑘) = [𝑄𝑄𝑆𝑆𝑆𝑆  𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇]𝑇𝑇 contains the thermal powers of the heat pump for either space cooling
or DHW production operation. These are the decision variables of the MPC. The vector 𝑒𝑒(𝑘𝑘) =
[𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎  𝐼𝐼𝐻𝐻  𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜  𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷]𝑇𝑇 contains the exogenous, non-controllable variables (also called disturbances), that
must be forecasted for the MPC to be able to make its projections in the future. The ambient temperature 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
and the solar irradiation 𝐼𝐼𝐻𝐻 represent the weather forecast: this is where different forecast strategies have been
tested in the present work. The heat gains from occupants and equipment 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 and the DHW tapping profile
𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷 represent the other disturbances.

The constraints on the inputs ensure that the thermal power chosen by the MPC stays within the operation 
limits of the chosen heat pump system, between the minimum 𝑄𝑄 and the maximum 𝑄𝑄. The binary variables 
𝛿𝛿𝑆𝑆𝑆𝑆 and 𝛿𝛿𝑇𝑇𝑇𝑇𝑇𝑇 allow the MPC to decide whether to operate the heat pump in SC or in DHW mode, and the
last input constraint guarantees that only one mode is activated at a time. The output constraints ensure the 
provision of comfortable conditions to the occupants. The indoor temperature 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 is thus limited below the
limit of 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 = 25℃ and the tank temperature 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 above the limit of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 50℃. These constraints are
softened by the slack variable 𝜀𝜀 , which is included in the objective 𝐽𝐽𝜀𝜀 . In this way, the constraints can
sometimes be violated, but at a certain cost reflected in the objective function. 

Finally, the cost objective is formulated as shown in Equation (2). A simplified model of the heat pump 
enables to estimate its power consumption 𝑃𝑃𝑒𝑒𝑒𝑒 in function of the thermal power 𝑄𝑄, the ambient temperature
𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 and the supply temperature 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠. This power consumption is then multiplied at every time step by the
price of electricity 𝑐𝑐𝑒𝑒𝑒𝑒 which varies hourly but still presents two distinct periods with high and low tariffs.

𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑃𝑃𝑒𝑒𝑒𝑒(𝑄𝑄,𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠) ∙ 𝑐𝑐𝑒𝑒𝑒𝑒 (1)

The MPC controller is called every hour, and only the first control actions are sent to the real heat pump, 
before another instance of the MPC is formulated and solved. 

2.4. Forecasts

In this study, the forecasts used within the MPC controller play an important role. Two configurations have 
been developed and tested: with perfect or imperfect forecast. During the days of September 13th to 16th of 
2018, the outdoor temperature and solar irradiation were measured from a weather station situated in Tarragona 
(Spain). In parallel, every hour a forecast of these two weather parameters for the next 24 hours was retrieved 
from an external service and stored. It is a commercial service available online through an API [10], which 
enables the automatic download of the weather forecast periodically. This information was then used as input 
for the MPC.

The case with perfect forecast uses the actual measurements as forecasts, therefore it has a perfect 
knowledge of the future. It should be noted that the forecasts used are in fact a resampled version of the real 
measurements, to fit with the discretization time step of the MPC optimization problem (12 minutes). For this 
reason, the forecasts are slightly smoothed but have a very similar shape than the measurements. 

The case with imperfect forecast uses the successive forecasts, as it would happen in a real operation on 
site with an actual building. The MPC runs its optimization every hour, therefore it updates with the best 
forecast information that it can have at the present moment.

The measurements and forecasts are presented in Figure 2. In the case of solar radiation, it appears that the 
forecasts did not take into account the cloud coverage, and only offered an estimation of the solar irradiation 
based on the location and hour of the day. This forecast matches well with the reality in the first day, as the 
sky was cloud-free, however it produces an important error on the third day, where the day was cloudier. The 
irradiation forecast does not actually change from one forecast to the next retrieved one hour later, for this 
reason all the curves are superposed. It should be noted that the weather forecast chosen was a free service, for 
this reason it is of poor quality, but it represents an actual service available on the market, for this reason it is 
interesting to investigate how the MPC would perform with such input.
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In the case of the ambient temperature, the forecasts are shown on the bottom of Figure 2, and they provide 
a better estimation of the future evolution of the outdoor temperature, compared to the measurements carried 
out afterwards. The forecast is updated regularly, for this reason we observe a stack of curves. The forecast is 
relatively good although for instance in the third day it shows more uncertainty, probably due to the more 
irregular weather of that day.

Figure 2. Measurements and successive forecasts of the solar irradiation and the ambient temperature in Tarragona (Spain) during three
days of September 2018.

2.5. Performance indicators

The performed tests are analyzed in the view of different performance indicators. The summed energy 
values constitute the first series of indicators: the thermal energy produced by the heat pump, and the electrical 
energy that it used, over the three days of experiment. It should be noted that the thermal energy is always 
counted positive, whereas it is cooling energy like in space cooling operation, or heating energy like during 
DHW production (both of them are then summed to obtain the total thermal energy). The ratio of these two 
quantities (thermal and electrical energy) represents the efficiency of the heat pump, also called coefficient of 
performance (COP). Next, the costs incurred by the use of the heat pump are computed: the calculation consists 
in an integration of the electrical energy over the three days, weighted at each time step by the price of 
electricity in EUR/kWh at that time step, using for this purpose an hourly price profile available for small 
consumers in Spain (PVPC) [11]. This electricity tariff has a higher price period in the afternoon, therefore the 
economic MPC strategy tends to avoid the heat pump operation during these hours.

To evaluate the comfort conditions in the building, the average indoor temperature is calculated, as well as 
the percentage of time spent in Category I according to standard EN15251 [12], the category of highest 
comfort. Finally, an indicator able to estimate if the control strategy is able to shift the loads towards low-price 
periods is chosen. The flexibility factor is a performance indicator that reveals if the heat pump has used more 
energy during low price hours (up to a value of 1) or during high price hours (down to a value of -1) [13]. Its 
formula is indicated in Equation (2), where 𝑃𝑃𝑒𝑒𝑒𝑒 represents the electrical power of the heat pump, and 𝑙𝑙𝑙𝑙 and
ℎ𝑝𝑝 the low and high price periods respectively.

𝐹𝐹𝐹𝐹 =
∫ 𝑃𝑃𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 − ∫ 𝑃𝑃𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑ℎ𝑝𝑝

∫ 𝑃𝑃𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 + ∫ 𝑃𝑃𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑ℎ𝑝𝑝

(2)
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3. Results

The main results of the two experimental cases are presented in Table 1, in terms of summed energy values,
average COP and comfort conditions, as well as with the chosen flexibility indicator.

Table 1. Summed or average values of several performance indicators over the three days of experiment in the two cases. The variation 
of the imperfect forecast case with respect to the perfect forecast case is indicated in absolute and/or relative terms.

Parameter Unit PERFECT IMPERFECT

Thermal energy [kWh] 94.4 99.9
Absolute variation [kWh] +5.5
Percentage variation [%] +5.8%

Electrical energy [kWh] 40.4 42.8
Absolute variation [kWh] +2.3
Percentage variation [%] +5.8%

COP [-] 2.3 2.3
Absolute variation [-] +0.0

Cost [EUR] 4.1 4.6
Absolute variation [EUR] +0.5
Percentage variation [%] +11.2%

Average zone temperature [ºC] 24.7 24.7
Absolute variation [ºC] +0.0

Time in Comfort Category I [%] 91.5% 95.0%
  Absolute variation [%] +3.5%

Flexibility factor cost FF [-] 0.5 0.3
Absolute variation [-] -0.2

To evaluate the performance of the two configurations comparatively, the energy costs constitute the most 
interesting indicator, since this is the declared objective of the MPC controller. In this regard, the case with 
imperfect forecast performs worse than the case with perfect forecast, resulting in an increase of 11% of the 
costs. It thus appears that knowing an accurate forecast of the weather conditions in advance constitutes an 
important advantage for the controller. The thermal energy delivered and the electrical energy used by the heat 
pump both also increase when the forecast is imperfect, but in a less important manner, by 5.8%.

Next, the impact of the control configurations on the load shifting towards low price periods is investigated. 
Although the price forecast is equal in both cases, the case with perfect forecast managed to shift a greater 
proportion of the loads towards the periods of low price, reaching a value of 𝐹𝐹𝐹𝐹 = 0.5, while with imperfect 
forecast it stayed at a value of 𝐹𝐹𝐹𝐹 = 0.3.

The different strategies had little impact on the comfort of the occupants: the average temperature within 
the inhabitable zone is equal in both configurations, with a value 24.7°C. The percentage of time spent in 
comfort category I (i.e. with temperatures below 25.5°C in cooling mode for residential buildings) increased a 
little in the case of imperfect forecast, with 95%, while the case of perfect forecast only had 91.5% of the time 
in Cat. I, which is still entirely satisfactory, given that Cat. I represents the highest level of expectation. The 
extra energy spent thus enables to slightly improve the comfort conditions. 

To understand better the dynamic behavior of the two configurations of the MPC controller, the time series 
of Figure 3 are plotted. The two versions of the controller behave in general similarly, for instance they tend 
to precool the building before the price increase happening every day, so as to limit the energy expenditure 
during the period of expensive electricity. However, some discrepancies are also observed, which explain the 
different results previously presented. For instance, on the third and last day, the imperfect forecast anticipated 
a large solar irradiation during the afternoon, while in fact the sky happened to be cloudy with low incoming 
solar radiation. Because of its overestimation, the MPC with imperfect forecast decided to cool the building in 
the early afternoon, anticipating an incoming solar radiation that never actually occurred, and so as to stay 
within the imposed comfort boundaries. On the other hand, the MPC with perfect forecast knew that the solar 
radiation would stay at a low level, and that active cooling would not be necessary to stay within the comfort 
zone. Since this difference in behavior occurred during a high price period, it had an important impact on the 
final energy costs, as can be seen in the end of the cumulative cost curves (third graph from the top). This 
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illustrates perfectly the importance of an accurate forecast for an MPC controller, and explains why the MPC 
with perfect forecast performed significantly better. 

Figure 3. Time series comparing the dynamics of both studied configurations along the three days of the experiments. 

4. Conclusions

In this study, an MPC controller was tested on a real heat pump system in an experimental laboratory setup, 
following the hardware-in-the-loop principles. Two experiments of three days duration were performed, one 
where the MPC controller was provided with a perfect forecast of the weather conditions for the next day, and 
the other where it used an imperfect forecast retrieved from an external service. When operated by the MPC 
with perfect forecast, the heat pump used 6% less electricity, which resulted in 11% savings on the energy 
costs, compared to the case with imperfect forecast. In the two experiments, the weather in the climate chamber 
where the heat pump is placed was identical, only the weather forecasts for the MPC was changed, which 
enabled to perform a thorough comparison on the MPC performance, when provided with a different forecast 
input. The results corroborate the learnings of the existing literature, highlighting the influence of the forecast 
accuracy on the savings achieved by the MPC. Additionally, the experimental nature of the work gives further 
reliability to the presented results, since few experimental studies on this topic had been carried out so far. 
From the obtained results, it can be concluded that a special care should be given to the choice of the weather 
forecast service when designing and implementing MPC in real buildings for climate control.

The weather forecasts used in this study originated from a commercial API available online, which gave a 
real-life example of service that could be connected to an MPC. However, it proved to be significantly 
inaccurate, especially regarding the solar irradiation. Better forecast service could have been used and would
probably have reduced the difference with the perfect forecast case. Another idea for further research could be 
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to study separately the influence of the forecast of the ambient temperature and the solar irradiation, to 
understand if there exists any difference in their impact, or if one of those parameters could be forecasted more 
loosely than the other without significant loss of performance. Finally, the presented study only presented real-
life cases of three days duration in cooling mode: these results could be extrapolated by performing longer 
experiments or simulations, also considering heating mode to find out whether the impact of the disturbance 
forecast changes seasonally. For instance, it appears that it was particularly important to forecast well the solar 
irradiation in cooling mode, since it is responsible for important heat gains and thus of the cooling demand, 
but on the other hand in heating mode, the ambient temperature might be the most important parameter to 
forecast accurately. These constitute interesting topics for further research.

Nomenclature

𝐽𝐽, 𝐽𝐽∆𝑢𝑢, 𝐽𝐽𝜀𝜀 , 𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
Global objective function, and subobjective terms, respectively for smoothing, 
comfort and cost reduction.

𝛼𝛼𝜀𝜀,𝛼𝛼∆𝑢𝑢 Weighting coefficients of the sub-objectives

𝐴𝐴,𝐵𝐵𝑢𝑢,𝐵𝐵𝑒𝑒 ,𝐶𝐶 Matrices of the state-space building model (parameterized with resistance and 
capacitance values)

𝑥𝑥, 𝑦𝑦,𝑢𝑢, 𝑒𝑒 Vectors of the states, outputs, controllable inputs, and exogenous inputs

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 , 𝐼𝐼𝐻𝐻 ,𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷
Exogenous inputs: ambient temperature, solar irradiation, heat gains from 
occupants/equipment, heat losses from DHW tapping

𝛿𝛿𝑆𝑆𝑆𝑆 , 𝛿𝛿𝑇𝑇𝑇𝑇𝑇𝑇 Binary variables for the activation of SC or DHW
𝑄𝑄𝑆𝑆𝑆𝑆 ,𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇 Thermal power for SC or DHW operation of the heat pump

𝑄𝑄𝑆𝑆𝑆𝑆 ,𝑄𝑄𝑆𝑆𝐶𝐶 ,𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇 ,𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇 Lower and upper limits of thermal power in SC or DHW modes respectively

𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 Comfort constraints (upper constraint for the room temperature and lower 
constraint for the DHW storage tank temperature)

𝜀𝜀 Slack variable to relax the comfort constraints
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 Supply temperature of the heat pump, indoor temperature of the building

𝑃𝑃𝑒𝑒𝑒𝑒 Electrical power use of the heat pump
𝐹𝐹𝐹𝐹 Flexibility factor
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