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Industrial Drying

• 70% of all process energy = process heating

• Industrial drying consumed 1.78 Quads of 
energy in 2010  (1.8% of all US energy)

• Electricity powers a small fraction of drying 
processes

• Industry accounts for 23% of carbon 
emissions in the U.S.

• Strong push in the U.S. to electrify processes
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Summary of Process Energy Use
(DOE AMO, 2014)

Energy Sources for Industrial Drying
(DOE)



Heat Pumps for Drying

• Heat pump systems for drying:
• Open systems (constantly feeding in 

outdoor air to the system)
• Closed systems (recirculate the air)

• Primary limitations of heat pump dryers:
• Cannot reach comparable temperatures to 

combustion heating
• Condensation dehumidification is energy 

intense and lowers heat pump COP
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Proposed System: MemDry

• Vacuum Membrane Dehumidification
• Materials selectively allow water vapor 

transport while blocking air
• No phase change, lower energy input
• Isothermal

• Proposed Cycle: MemDry
• High efficiency, dual module humidity 

pump design for dehumidification
• Use condensation energy to enable higher 

evaporator temperature (higher COP)
• Minimize reheating energy

15-18 May 2023, Chicago, Illinois 5



Membrane Materials

• Material properties are not needed for 
the generalized model presented today

• Coat several layers of Pebax 1657 + GO 
onto a porous PVDF substrate

• Dense (non-porous), hygroscopic 
polymer layer blocks air particles

• Water vapor adsorbs onto surface
• Diffuses through the polymer
• Desorbs on the low vapor pressure side
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Pebax 1675 and GO Membranes
(Fix et al., 2023) & (Warsinger Lab, ACS Conference)



Modeling Framework

Heat Pump Model
• Reviewed high-temperature heat pump 

cycle models for a range of second law 
efficiencies, ηII

• Average ~0.4
• Applied two cases:

• Ideal: 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑇𝑇H
𝑇𝑇H−𝑇𝑇C

= 𝑇𝑇H
∆𝑇𝑇lift

• Practical: 𝐶𝐶𝐶𝐶𝐶𝐶 = ηII
𝑇𝑇H

𝑇𝑇H−𝑇𝑇C
= ηII

𝑇𝑇H
∆𝑇𝑇lift
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Review of Modeled Second Law Efficiency 
for High-Temperature Heat Pumps



Modeling Framework

Membrane Model
• No material properties needed –

thermodynamic model only
• Assume perfectly selective (no air)

• Our membranes ~70,000 (very high)

• Set vacuum vapor pressures based on a 
pinch point difference

• E.g. 𝑃𝑃v,vac = 𝑃𝑃v,supply − ∆𝑃𝑃v,pinch
• Assume membrane module is big enough 

to accommodate this setup
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Variable/Input Ideal Scenario Practical Scenario 

Pinch vapor pressure difference, ∆𝑃𝑃v,pinch 0 [kPa] 0.5 [kPa] 

Compressor isentropic efficiency, 𝜂𝜂WVC  1 [-] 0.70 [-] 

Heat pump second law efficiency, 𝜂𝜂II 1 [-] 0.40 [-] 

 



Modeling Framework

Dryer Model
• Ideal dryer

• Adiabatic drying (∆𝑇𝑇~∆𝜔𝜔 × ℎfg)
• Outlet air is always saturated

System Comparison
• Supply dew point and dry bulb 

temperature always equal
• Same condenser temperature
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Shared Adiabatic Drying Process

Baseline Cooling, Condensation, 
and Reheating Process

MemDry Isothermal 
Dehumidification and 
Reheating Process
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Results: Improving Heat Pump COP
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• Why is condensation bad in the baseline but good in the MemDry? 
• Dew point temperature is prescribed and 

constant (evaporator outlet state IS set)
• 𝑄𝑄evap (dehumidification) and 𝑄𝑄cond

(reheating) are both necessary purposes of 
the system, leading to large lift

𝐶𝐶𝐶𝐶𝐶𝐶~
𝑇𝑇supply
∆𝑇𝑇lift

Supply Temperature (3)

Supply Dew Point Temperature (3DP)

Ambient Temperature (4)

Dry Evap. Outlet (MemDry) (5’)

Wet Evap. Outlet (MemDry) (5)

• 𝑄𝑄cond (reheating) is the main purpose
• Condensation in the evaporator is not 

necessary to maintain the drying process
• State 6 IS NOT set - the evaporator load 

just needs to be met
• Either from sensible or latent heat
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Results: Improving Heat Pump COP
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• Can evaluate how adding the 
humidity before the evaporator 
improves COP (lower lift)

• COPdry ~ as if the vapor was rejected 
somewhere else & evaporator relies 
only on sensible heat transfer

• COPwet ~ the humidity is added to 
the ambient air before evaporator

• COP improved up to 2x at very hot 
ambient conditions 20 25 30 35 40 45
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Results: Energy Savings
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• Evaluate the energy savings as a 
function of the drying temperature 
and inlet humidity (dew point)

• Highest savings are at high 
temperature and low dew point at 
the dryer inlet

• Most conducive regime for drying

• Negative savings at low temperature 
and high humidity at dryer inlet

• Not good for drying

Energy Savings vs. Operating Conditions
(Ambient is 30℃ and 40% RH)
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Results: Optimization
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• Drying time is a function of inlet 
temperature and humidity

• MemDry can efficiently reduce the 
inlet humidity, requiring lower inlet 
temperature for a fixed dry time

• Optimize the tradeoff between 
compressor power and heat pump 
power.

• Reduce required drying temperature 
to improve feasibility of heat pumps

Energy Savings and Dryer Temperature
(Ambient is 30℃ and 40% RH)
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Conclusions
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• Through clever system design, heat 
pump COP can be improved up to 2x 
by using condensation energy

• Energy savings can reach up to 40% 
over the baseline system

• Largely due to avoiding condensation 
and reheating penalties

• Also due to improved heat pump COPs
• MemDry provides great flexibility 

with drying time and drying 
conditions

𝐶𝐶𝐶𝐶𝐶𝐶



Future Work
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• This work is funded by DOE
• The current results are introductory 

and intended to provide high-level 
understanding of the technology

• We are currently working on:
• Detailed heat pump modeling
• Pilot prototype development
• Discretized, physics-based simulations
• Advanced materials enhancements

  

 
 

  

  
 

  

 

   

   

 
    

   

 
 
 

  

 

(a) Schematic diagram of hollow fiber membranes      
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