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Outlines



Background

➢ HTHP with Tsink >100℃
• HP for high energy efficiency

• State of the art: electric-driven mechanical vapor 
refrigerant compression cycles

• One of key technologies in industrial 
decarbonization

Fossil fuels for 95% of process heating;     

Available waste heat (<100℃) in industry, e.g., 
paper drying; 

Technical feasibility of HTHPs for combined 
heating and cooling, e.g., food industry.

• R&D Efforts: advanced cycles and components, 
e.g., internal heat exchangers, two-phase 
ejectors.
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Breakdown of on-site energy use and process heating 
temperature levels at US manufacturing facilities in 2018.* 

*Manufacturing Energy and Carbon Footprint: All Manufacturing (2018 MECS),” U.S. Department of Energy Advanced Manufacturing Office, 
December 2021, https://www.energy.gov/sites/default/files/2022- 01/2018_mecs_all_manufacturing_energy_carbon_footprint.pdf.



Background

➢ HTHPs using Two-Phase 
Ejector as an Expander

• Basic configuration of HTHP
Process: 1->2->3->4’->5’->1

• HTHP with a two-phase 
ejector

• Contributions of Ejector
Expansion valve: h4’ = h5’

Ejector: s4=s5

• Working principle of two-
phase ejector

Recovering energy from 
throttling loss, providing
i. reduced compressor work,
ii. increased specific cooling   

capacity.
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Fig. 1 HTHP with a two-phase ejector as an expander. 
(a) System configuration, and (b) P-h diagram. 

Reduced 
compressor work

Increased specific 
cooling capacity



Theoretical Model of Two-Phase Ejector

➢ Two Types of Ejectors Used in HTHPs
• Supersonic ejector: as a thermo-compressor in heat-driven HTHPs, Paper#938, #939 and #1133

• Two-phase ejector: as an expander replacing expansion valve, this study and Paper#459 

In subcritical cycle, high T/P liquid of primary fluid (PF) and low T/P vapor of secondary fluid (SF)

In transcritical CO2 cycle, high T/P vapor of PF and low T/P vapor of SF

➢ Thermodynamic Model of Two-Phase Ejectors: Kornhauser’s Model (1990)*
• Built with (1) the conservation of mass, momentum, (2) energy, constant-pressure mixing process, 

(3) homogeneous equilibrium model for thermodynamic quasi-equilibrium in two-phase flow      

• Input: Properties of PF and SF, mPF, T4, P4, T12, and P12; Ejector component efficiency, ηN, ηS, and ηD.

• Output: mSF (or ω= mSF / mPF), T8, and P8. 

• Challenges: Guessed value of the mixing pressure, Pmixing.

Kronhauser (1990): Pmixing for the same velocity of PF and SF before mixing;   

Lawrence and Elbel (2012)**: an equivalent temperature drop of 5 ℃ in the saturated pressure of SF.
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*A. A. Kornhauser, "The use of an ejector as a refrigerant expander," presented at the International Refrigeration and Air Conditioning Conference, West Lafayette, IN, United States 1990, 82.
**N. Lawrence and S. Elbel, "Experimental investigation of a two-phase ejector cycle suitable for use with low-pressure refrigerants R134a and R1234yf," International Journal of Refrigeration, vol. 38, 
pp. 310-322, 2014/02/01/ 2014



Theoretical Model of Two-Phase Ejector
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Fig. 2 Typical flow phenomena in a two-phase 
ejector. (NXP stands for nozzle exit plane. MF 

represents the mixed PF and SF)*
*Wang, Pengtao and AbuHeiba, Ahmad and Spitzenberger, Jeremy and Kowalski, Stephen and Ma, Hongbin and Nawaz, Kashif, 
Thermodynamic Analysis of a Two-Stage Binary-Fluid Ejector Heat Pump Water Heater. Submitted to Energy.

➢ Gas-Dynamic Model of Two-Phase Ejectors (1)
• Gas-dynamic process within an ejector

i->ii->iii, PF accelerates in the primary nozzle, and
creates low pressure zone at nozzle’s outlet;     

iv->v, SF accelerates in the secondary nozzle;
iii+v->vi, PF and SF mixes under pmixing;
vi->vii, possible normal shock wave, if Mvi>1;
vii->viii, mixed flow diffuses;

• Gas-dynamic model of a two-phase ejector
A comprehensive, geometry-free, theoretical model;
Homogeneous equilibrium in two-phase flow;
Real properties of working fluids;
Gas dynamic process depending on pmixing;
Potential choked flow and normal shock wave is
determined by the Mach number.



Theoretical Model of Two-Phase Ejector
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➢ Gas-Dynamic Model of Two-Phase Ejectors (2)
• Governing equations

Energy conservation of PF through the primary nozzle, 

ℎiii = 1 − ηN ℎi + ηNℎiii,is , ℎv,is = ℎ(𝑠i, 𝑝𝑖𝑖𝑖), and ℎv,is = ℎ(𝑠iv, 𝑝v).

For the SF flow, ℎv,is = ℎ(𝑠iv, 𝑝v), and 𝑉v,max = 𝐶v.

In the mixing process, 𝑝iii = 𝑝v = 𝑝vi = 𝑝M, 

ϕM ሶ𝑚PF𝑉iii + ሶ𝑚SF𝑉v = ሶ𝑚PF + ሶ𝑚SF 𝑉vi,

ሶ𝑚PF + ሶ𝑚SF ℎvi +
1

2
𝑉vi
2 = ሶ𝑚PF ℎiii +

1

2
𝑉iii
2 + ሶ𝑚SF ℎv +

1

2
𝑉v
2 .

For supersonic flow, Mvi ≥ 1, condensation shock wave occurs.

For subsonic flow, Vvii = 𝑉vi, 𝑝vii = 𝑝vi, and 𝑠vii = 𝑠vi = 𝑠(𝑝vi, ℎvi).

In the diffuser, ℎviii,is = ℎvii + ηD
1

2
𝑉vii
2 .

The discharged mixed fluid, 𝑝viii = 𝑝(ℎviii,is, 𝑠viii) and 𝑠viii = 𝑠vii, 

and 𝑥viii = 𝑥(𝑝viii, ℎviii).  
Fig. 3. Flow chart of solving the two-phase ejector model. 



Model of HTHP with a Two-Phase Ejector

➢ Model of HTHP with a Two-Phase Ejector
A thermodynamic model is built with the mass and energy conservation in each component.

➢ Performance of ejector-assisted HTHP
Coefficient of Performance (COP):  𝐶𝑂𝑃EHTHP =

𝑄sink
𝑊Comp

Volumetric Heating Capacity (VHC): 𝑉𝐻𝐶 = ηvolρ1(ℎ2 − ℎ3)

Ejector efficiency: ηEJT =
𝑊r

𝑊r,max
=

ℎA−ℎB

ℎC−ℎD

➢ Low global-warming potential (GWP) refrigerants

15-18 May 2023, Chicago, Illinois 8

Group Refrigerants Formula Tcr [℃]
Pcr

[MPa]

ρ

[kg/m3]
NBP [℃]

MW 

[kg/kmol]
ODP GWP SC

HC
R601 C5H12 196.6 3.37 10.1 36.1 72.2 0 5 A3
R600 C4H10 152.0 3.80 25.2 -0.5 58.1 0 4 A3

HCFO
R1233zd(E) C3ClF3H2 166.5 3.62 34.8 18.3 130.5 0.00034 1 A1

R1224yd(Z) C3ClF4H 155.5 3.33 45.6 14.6 148.5 0.00012 <1 A1

HFO
R1336mzz(Z) C4F6H2 171.4 2.90 27.5 33.4 164.1 0 2 A1
R1234ze(Z) C3F4H2 150.1 3.53 42.2 9.8 114.0 0 <1 A2L

HFC R245fa C3F5H3 154.0 3.65 44.1 15.1 134.0 0 858 B1



Results and Discussions

➢ Operating Parameters of 
HTHPs

• Tsink = 120 ℃, ΔTlift = 40 ℃,
ΔTsc = 10 ℃, ΔTglide = 0 ℃.

• ηN = 0.8, ηS = 0.8, ηM = 0.9, 
and ηD = 0.8.

• Assumed ΔTM,

pmixing =psat (Tevap-ΔTM)

➢ Gas dynamic characteristics                      
• For an isentropic process, pmixing ↓, 

Δh (enthalpy) ↑,  x (quality) ↑, 
vPF↑ and vSF↑,

but vPF > vSF; p8 ↓.
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Fig. 4 Effects of the mixing pressure on the gas dynamic properties in a two-
phase ejector. (a) Velocity, and (b) static pressure.



Results and Discussions
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Fig. 5 Effects of the mixing pressure on the two-phase ejector’s performance. 
(a) Entrainment ratio, (b) pressure lift ratio, and (c) ejector efficiency.

➢ Effects of the Mixing Pressure (1)
Four featured points: (1) max pressure lift ratio, Πmax; (2) no pressure lift ratio, Π = 1;

(3) zero mixing loss, VPF = VSF;     (4) choked SF flow, MSF = 1.



Results and Discussions
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Fig. 6 Effects of the mixing pressure on the performance of an ejector-assisted HTHP. 
(a) COP, and (b) VHC.

➢ Effects of the 
Mixing Pressure (2)

• COP and VHC of 
ejector-assisted 
HTHPs depend on 
the performance of 
two-phase ejector.

• pmixing for the 
optimum ηEJT gives 
the maximum COP 
and VHC of HTHPs.



Results and Discussions
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Fig. 7 Ejector-assisted HTHPs with different refrigerants. 
(a) Ejector efficiency, (b) COP, and (c) ejector efficiency.

➢ Effects of Working Fluids (1)
• Averaged improvement ΔCOP = 7.2%±0.9%, ΔVHC = 7.3%±0.7% .
• A lower improvement in HTHPs, compared to trans-CO2 HPs, ΔCOP = 15-30%.
• A smaller ΔTM,    ΔTM = 0.7±0.1 ℃, compared to trans-CO2 HPs, ΔTM = 5 ℃.



Results and Discussions
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P-h diagram of R1234ze(Z).

➢ Effects of Working Fluids (2)
• Thermal physical properties of 

refrigerants on HTHP’s performance 
(1) Primary fluid (PF) in low quality 
two-phase region, isentropic and 
isenthalpic lines are parallel, giving a 
low throttling loss;
(2) Secondary fluid (SF) in high quality 
two-phase region, slopes of isentropic 
lines are much larger than those of 
isenthalpic lines, giving a larger velocity 
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Conclusions and Future Work

➢ Conclusions
• There is an optimum mixing pressure in a two-phase ejector, which gives the maximum performance of

two-phase ejector and ejector-assisted HTHP.

• At the optimum mixing pressure, the two-phase flow in a two-phase ejector is subsonic. Choked flow of SF
and condensation shock waves do not occur.

• The optimum mixing pressure of two-phase ejector for HTHPs is slightly lower than the evaporation
pressure of SF.

• Two-phase ejector improves the performance of HTHPs with low GWP refrigerants. But the improvement 
of COP is less than these for transcritical CO2 HPs.

➢ Future work
• Design, fabricate, and experimental test of the component performance of two-phase ejector.

• Evaluate the system-level performance of HTHPs with a two-phase ejector, comparing with other energy
recovery devices, e.g., turbo expanders, pressure exchangers, and vortex tubes.
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ORNL’s Building Technologies Research and Integration Center (BTRIC) is a DOE-
designated national user facility. BTRIC is comprised of 60,000+ ft2 of lab facilities 
conducting RD&D to support the DOE mission to equitably transition America to a 
carbon pollution-free electricity sector by 2035 and carbon free economy by 2050. 
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