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» HTHP with T >100°C

S Process
* HP for high energy efficiency ci'%“,,}{g, 5% AL
. . . % 82.0%
 State of the art: electric-driven mechanical vapoil - T
refrigerant compression cycles 5% Lo NSRS
: Macgmery & Vehlcles
* One of key technologies in industrial e e .
H H Uses : Chemicals
deca rb0n|zat|on 5% ; Process Heating 10.3% :
. ) 51% 200-500°C (7%) 'Nonferrous Metals |
Fossil fuels for 95% of process heating; 85%
) o\ - - e 100-2007L ‘Iron & steel ;
Available waste heat (<100°C) in industry, e.g., 10% 2 32%
P "Nonmetaliic Minersis: 1
paper drylng’ gnsite iner% <]i(;(;/n)c “""4% ......................
. . ol . eneration 0 |
Technical feasibility of HTHPs for combined Distributon osses ‘ [ gar s |
heating and cooling, e.g., food industry. T
e R&D Efforts: advanced cycles and components, Breakdown of on-site energy use and process heating
e.g., internal heat exchangers, two-phase temperature levels at US manufacturing facilities in 2018.*
ej ecto rs . *Manufacturing Energy and Carbon Footprint: All Manufacturing (2018 MECS),” U.S. Department of Energy Advanced Manufacturing Office,

December 2021, https://www.energy.gov/sites/default/files/2022- 01/2018_mecs_all_manufacturing_energy_carbon_footprint.pdf.
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» HTHPs using Two-Phase (a) Bl (b) Reduced
Ejector as an Expander r ) 1 compressor work

Condenser

e Basic configuration of HTHP
Process: 1->2->3->4’->5"->1

e HTHP with a two-phase
ejector > p

 Contributions of Ejector s
Expansion valve: h,, = h.,
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Ejector: s,=s. . 7§ 12(12)
 Working principle of two- LEector T e -
. Evaporator
phase ejector 12 11 )
Recovering energy from : EV Increased specitic h ;
throttling loss, providing %Somi cooling capacity

i. reduced compressor work,

ii. increased specific cooling Fig. 1 HTHP with a two-phase ejector as an expander.

(a) System configuration, and (b) P-h diagram.

capacity.
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» Two Types of Ejectors Used in HTHPs
» Supersonic ejector: as a thermo-compressor in heat-driven HTHPs, Paper#938, #939 and #1133
* Two-phase ejector: as an expander replacing expansion valve, this study and Paper#459
In subcritical cycle, high T/P liquid of primary fluid (PF) and low T/P vapor of secondary fluid (SF)
In transcritical CO, cycle, high T/P vapor of PF and low T/P vapor of SF
» Thermodynamic Model of Two-Phase Ejectors: Kornhauser’s Model (1990)*

 Built with (1) the conservation of mass, momentum, (2) energy, constant-pressure mixing process,
(3) homogeneous equilibrium model for thermodynamic quasi-equilibrium in two-phase flow
* Input: Properties of PF and SF, m,, T,, P,, T;,, and P,,; Ejector component efficiency, ny, ns, and np.
* Output: mee (or w=mg/ my;), Tg, and Pg.
* Challenges: Guessed value of the mixing pressure, P ;...
Kronhauser (1990): P, for the same velocity of PF and SF before mixing;
Lawrence and Elbel (2012)**: an equivalent temperature drop of 5 °C in the saturated pressure of SF.

*A. A. Kornhauser, "The use of an ejector as a refrigerant expander," presented at the International Refrigeration and Air Conditioning Conference, West Lafayette, IN, United States 1990, 82.
**N. Lawrence and S. Elbel, "Experimental investigation of a two-phase ejector cycle suitable for use with low-pressure refrigerants R134a and R1234yf," International Journal of Refrigeration, vol. 38,

pp. 310-322, 2014/02/01/ 2014
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» Gas-Dynamic Model of Two-Phase Ejectors (1)
e Gas-dynamic process within an ejector

i->ii->iii, PF accelerates in the primary nozzle, and et Mixing Chamber Diffucar |
creates low pressure zone at nozzle’s outlet; Comvarging|  ConstantiAfes
iv->v, SF accelerates in the secondary nozzle; a
iii+v->vi, PF and SF mixes under p, i Ny ——
vi->vii, possible normal shock wave, if M .>1; PR - v,’: iy = e
vii->viii, mixed flow diffuses; Primary Nozzle ~ m s
* Gas-dynamic model of a two-phase ejector e eTmalsheck
A comprehensive, geometry-free, theoretical model; W
Homogeneous equilibrium in two-phase flow; SFW
Real properties of working fluids; Fig. 2 Typical flow phenomena in a two-phase
Gas dynamic process depending on Prmixing ejector. (NXP stands fOI’ nozzle exit plane. MF
Potential choked flow and normal shock wave is represents the mixed PF and SF)*
. determined by the Mach number. Thermochmamie Analyisof 8 r-Stage Binany-FAld fector Heat Pump Water eatar. mitea to fnetgye
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» Gas-Dynamic Model of Two-Phase Ejectors (2) / ¢/

* Governing equations

Energy conservation of PF through the primary nozzle,

hiji = (1 — )k + Mnhiiiis » hvis = R(Si i), and hy is = R(Siy, Py)-
For the SF flow, hy js = h(Sjy, Dv), and V, max = Cy.
In the mixing process, piii = Pv = Pvi = PM»

dm(mpgpVisi + msely) = (Mpr + msp) Vi,
(1pg + 1MsF) (hvi + %VVZI) = Mpp (hiii + %Vlﬁ) + Mg (hv + %sz)-

For supersonic flow, M, > 1, condensation shock wave occurs.
For subsonic flow, Vyii = Vi, Dvii = Pvi, and Syii = Svi = S(Pvi, hvi)-
In the diffuser, hyijiis = hvij + Np % V.
The discharged mixed fluid, pyiii = P(Ryiiiis Sviii) aNd Sviii = Sviis

and xyiii = X(Piii» Miii)-

Calculating Pinixing: hor Spr Rasor Rastisr Visor Miser o Sivr By
hy, ;5. V,, using state equations and Egns. (1-5), (18-19)

No|

My =1,
Vier= Caat

¥

PR T

‘ Calculating hy;, V,,;, M,,;, using Eqns. (6-7) and (18-19) |

¥

Yes @ No

Calculating h,; Vyiio
Syii» using Egns. (8-12)

Calculating hy,;;, Vyii,
Sygi, Using Eqn. (13)

1

]

Calculating Ry, Rygiyiss Puisir Xvur Using Eqns. (14-17)

Fig. 3. Flow chart of solving the two-phase ejector model.
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» Model of HTHP with a Two-Phase Ejector

A thermodynamic model is built with the mass and energy conservation in each component.

» Performance of ejector-assisted HTHP

Q .
Coefficient of Performance (COP): COPgythp = Wsmk

Comp

Volumetric Heating Capacity (VHC): VHC = nyo1p1(hy, — h3)
Wr _ ha-hp

Wr,max hC_hD

» Low global-warming potential (GWP) refrigerants

mmmmmmm-

Ejector efficiency: ngjr =

R601 CsHy, 196.6 3.37 10.1 36.1 72.2 5

R600 C,Hp 152.0 3.80 25.2 -0.5 58.1 0 4
R1233zd(E) C;CIF;H, 166.5 3.62 34.8 18.3 130.5 0.00034 1 Al
R1224yd(Z) C,CIF,H 155.5 3.33 45.6 14.6 148.5 0.00012 <1 Al
R1336mzz(Z) C,FeH, 171.4 2.90 27.5 334 164.1 0 2 Al
R1234ze(2) C;F,H, 150.1 3.53 42.2 9.8 114.0 0 <1 A2L

R245fa C;FsH, 154.0 3.65 44.1 15.1 134.0 0 858 Bl
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» Operating Parameters of

HTHPs
* T..=120°C, AT, =40 °C,

S

150

—m—V,, R1336mzz(2) Mge= 1 | iRt e e pi  |—e—p,]
- 5008 11, :

s [ Pii

AT, =10 °C, ATg4. = 0 °C. 100 - g
*nNy=08n,=08n,=09 £ e
and np = 0.8. g §
* Assumed AT,, 2 50- éaoo-

)

p mixing “Psat (Evap_A TM)

200 -
» Gas dynamic characteristics |
* For an isentropic process, p i, > 0 5 0 15 20 25 2 . i = &8 B8
Ah (enthalpy) 1, x (quality) 1, ATy () )
Ve T and v T 5 19)
o Pfc S >F ’\l/ Fig. 4 Effects of the mixing pressure on the gas dynamic properties in a two-
UL Ve > Vsps Pg V- phase ejector. (a) Velocity, and (b) static pressure.
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» Effects of the Mixing Pressure (1)

Four featured points: (1) max pressure lift ratio, . _.; (2) no pressure lift ratio, M = 1;
(3) zero mixing loss, Vo = V;  (4) choked SF flow, M, = 1.
11

0.75

. R1336mzz(Z) - R1336mzz(2) 04d _ ifna R1336mzz(Z)
-l 0.2
0.70+
0.0-
.
2 = o
i 0.9 - 0.2 4
065 - : g MSF= 1
' ' 04
: 0.8-
on 103 —0'6 0154 -
0'60 L} - " - - L} Ll L} L) - : " - - Ll Ll L} L} - ; . T ' X Ll - -
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
AT,y (K) AT;y (K) AT,y (K)
(a) (b) (c)

Fig. 5 Effects of the mixing pressure on the two-phase ejector’s performance.
(a) Entrainment ratio, (b) pressure lift ratio, and (c) ejector efficiency.
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6.5 3400
> EffeCtS Of the n’.""" _____________________________ R1336mzz(2) ) nf""x R1336mzz(2)
Mixing Pressure (2) n=1 I 3200 ©
60{ 5 I
* COP and VHC of
3000 -
ejector-assisted N =
HTHPs depend on  8°° = el
the performance of i 2600 -
two-phase ejector.  >* -
* Prmixing fOT the | :
. . 45 T : v T v T v T v T v 2200 T : v T v T v T . T '
optimum NejT 8IVES 0 5 10 15 20 25 0 5 10 15 20 25
the maximum COP ATy (K) ATy (K)

(a) (b)
Fig. 6 Effects of the mixing pressure on the performance of an ejector-assisted HTHP.
(a) COP, and (b) VHC.

and VHC of HTHPs.
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» Effects of Working Fluids (1)
Averaged improvement ACOP =7.2%+0.9%, AVHC=7.3%+0.7% .
A lower improvement in HTHPs, compared to trans-CO, HPs, ACOP = 15-30%.

— o _CoO
* Asmaller AT,, AT,,=0.7+0.1°C, compared to trans-CO, HPs, AT,, =5 °C.
7
0.4 6.8
____________ —i— R601 —i— R601
i —@— R600 —8—R600 6000 - W
: —A— R12332d(E) —A— R12332d(E) 4 <4<<< R600
034 | —y— R1224yd(2) 6.6 - —y— R1224yd(Z) — g
—&— R1336mzz(2) —&— R1336mzz(2) Sas o = O - 4 R1234z¢(2)
---------- —4— R123428(Z) 4 R123428(Z) | 5000 l T R245fa l
—p— R245fa gt —p— R245fa — W*‘\v\,\
L 0.2- g £ %‘ v R1224yd(2)
@ o < R1233zd(E)
. Q © 4000-
- ‘ N 6.2 I
' 0y SUID0-90-0-0-¢
= f o 3000 - $Ee o R1336m2z(2)
0.0 4 ‘ { . R601
gﬁ—:":_-.a.— o —‘;‘r—‘.- L Ll L) L) 5-8 g o L) L) L) L) 2000 L) L) L) L) L)
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
AT, (K) AT, (K) AT, (K)
(a) (b) (c)

Fig. 7 Ejector-assisted HTHPs with different refrigerants.
(a) Ejector efficiency, (b) COP, and (c) ejector efficiency.
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R1234ze(2)

» Effects of Working Fluids (2) 4x10°
 Thermal physical properties of
refrigerants on HTHP’s performance
(1) Primary fluid (PF) in low quality
two-phase region, isentropic and
isenthalpic lines are parallel, giving a
low throttling loss;
(2) Secondary fluid (SF) in high quality
two-phase region, slopes of isentropic
lines are much larger than those of
isenthalpic lines, giving a larger velocity
increase.

10*

P [kPa]

10

9x10

h [kJ/kg]
P-h diagram of R1234ze(Z2).
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» Conclusions
* There is an optimum mixing pressure in a two-phase ejector, which gives the maximum performance of
two-phase ejector and ejector-assisted HTHP.

* At the optimum mixing pressure, the two-phase flow in a two-phase ejector is subsonic. Choked flow of SF
and condensation shock waves do not occur.

 The optimum mixing pressure of two-phase ejector for HTHPs is slightly lower than the evaporation
pressure of SF.

* Two-phase ejector improves the performance of HTHPs with low GWP refrigerants. But the improvement
of COP is less than these for transcritical CO, HPs.

» Future work
* Design, fabricate, and experimental test of the component performance of two-phase ejector.

* Evaluate the system-level performance of HTHPs with a two-phase ejector, comparing with other energy
recovery devices, e.g., turbo expanders, pressure exchangers, and vortex tubes.
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