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Why high-temperature heat pumps?

• The energy use in industry (2019): 40 % of the global CO2 emission’s
➢ Mainly attributed to the demand in heat.
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Total energy demand European industry [2]:



Research gap in high-temperature heat pumps

Research: maximizing COP
• Refrigerant selection
• Heat pump configurations
• Component development/optimization
• …

→ Is the increase in investment cost worth it? 

Some research, but:
• Supply temperatures < 120-150 °C      

• Few working fluids   

• Specific case studies

• Simple cycles 
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This research

160-200 °C

All fluids within REFPROP 10.0, including 
binary mixtures

Large set of generalized cases

Single stage Double stage

Internal heat exchange No internal heat exchange



The starting point: Thermodynamic model 

General assumptions:
➢ No pressure drops
➢ No heat losses

Compressor:
➢ 𝜂𝑣 = 90 %
➢ 𝜂𝑖𝑠 = 75 %
➢ 𝜂𝑑𝑟𝑖𝑣𝑒 = 95 %
➢ Maximum pressure ratio per stage: 6

Expansion valve:
➢ Isenthalpic

Evaporator/ condenser/ gas cooler / gas heater:
➢ Minimum temperature approach

Internal heat exchanger:
➢ 𝜀: 0.75
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Generic model



Extension: Financial aspects
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𝐿𝐶𝑂𝐻(€/kWhth) =
𝐶𝐶𝐴𝑃𝐸𝑋+σ𝑡=1

𝑛 𝐶𝑂𝑃𝐸𝑋,𝑡

(1+𝑖)𝑡

σ𝑡=1
𝑛 𝑄𝑡

(1+𝑖)𝑡

Operational expenditure

𝐶𝑂𝑃𝐸𝑋 = 𝐶𝑒 + 𝐶𝑚𝑎𝑖𝑛𝑡 = 𝑐𝑒∙
ሶ𝑄𝑝𝑟𝑜𝑐𝑒𝑠𝑠
𝐶𝑂𝑃

∙ ℎ𝑎 + 𝑓𝑚𝑎𝑖𝑛𝑡 ∙ 𝐶𝐶𝐴𝑃𝐸𝑋

Capital expenditure
𝐶𝐶𝐴𝑃𝐸𝑋 = 𝐶𝑇𝑀 Turton et al. 3
• 𝐶𝑐𝑜𝑚𝑝 = 𝑓( ሶ𝑣𝑐𝑜𝑚𝑝,𝑖𝑛)

• 𝐶𝑑𝑟𝑖𝑣𝑒 = 𝑓 ሶ𝑊𝑐𝑜𝑚𝑝

• 𝐶ℎ𝑒𝑥 = 𝑓 𝐴
• 𝐶𝑣𝑎𝑙𝑣𝑒 = 𝑓( ሶ𝑚𝑟𝑒𝑓)

Parameter Value

Heat pump lifetime (n) 15 year

Interest rate (i) 5 %

Maintenance fraction (fmaint) 0.06

Annual operating hours (ha) 7000 h

Specific electricity cost (ce) 0.0806 €/kWhel

Heating capacity ( ሶ𝑄𝑝𝑟𝑜𝑐𝑒𝑠𝑠) 500 kWth



Case studies 
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Heat source Heat sink Example application

Latent Latent Distillation 

Sensible Latent
Direct steam production 
from hot water

Latent Sensible Superheated steam drying

Sensible Sensible Hot air drying

Heat sink outlet temperature: 160 - 200 °C
→ ∆Tsink = 20 / 40 / 60 K 
Heat source inlet temperature: 80 - 120 °C
→ ∆Tsource = 10 / 20 / 30 K
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Financial optimization model
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REFPROP 10.0
Database

Fluid screening

Working fluids

Financial model

Global optimizer

Boundary conditions

Optimization 
constraints

Operating conditions
(∆Tsh,∆Tsc,phigh,plow,xmolar)

Optimized operating conditions 
and cycle for each fluid

Post processing

Results

• GWP ≤ 150 & ODP ≈ 0
• NFPA 704 instability grade = 0
• NFPA 704 health grade ≤ 4 
• Thermally stable
→ All binary mixtures of these fluids, but no 
focus on transcritical zeotropic mixtures.

Global optimizer in SciPy
Maximize LCOH:
➢ ∆Tsh, ∆Tsc, phigh, plow, xmolar

Constraint: 
➢ No wet compression
➢ Pinch point HEX: 5 K

Maximum discharge pressure:
➢ CO2: 150 bar
➢ Other refrigerants: 60 bar
Minimum suction pressure:
➢ Flammable refrigerant: 1 bar
➢ Non-flammable refrigerant: 0.5 bar

Technical constraints



Working fluid Molar fraction first 
component

Stages IHX COP
LCOH 

[€/kWhth]
cinv

[€/kWth]

Cyclobutene - 1 Yes 3.37 0.0317 357

Methanol - 2 No 3.71 0.0331 528

Cis-2-butene - 1 Yes 3.18 0.0339 396

Benzene - 2 Yes 3.82 0.0400 871

A ‘sensible sensible’ case study:
Results
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T

Q

120 °C
100 °C

180 °C

160 °C

Working fluid Molar fraction first 
component

Stages IHX COP
LCOH 

[€/kWhth]
cinv

[€/kWth]

Methanol/ammonia 0.685 1 No 3.84 0.0290 372

Cis-2-butene/methanol 0.585 1 Yes 3.56 0.0305 363

Benzene/methanol 0.684 1 Yes 4.10 0.0307 512

Cyclobutene/toluene 0.955 1 Yes 3.45 0.0309 351

Cyclobutene/heptane 0.963 1 Yes 3.46 0.0310 357

The five best performing working fluids:

The respective pure working fluids:



A ‘sensible sensible’ case study:
Potential of binary mixtures
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T

Q

120 °C

100 °C

180 °C

160 °C

Methanol&ammoniaMethanol Binary mixtures:

(1) Increase the COP
➢ Improved temperature matching. 
➢ More favorable thermophysical properties? 

(2) Reduce the investment cost
➢ Less compression stages
➢ Lower volume flow rate compressor inlet

pcd = 37.56 bar
pev = 6.62 bar

pcd = 27.75 bar
Pev = 3.45 bar

𝜋 =
𝑝𝑐𝑑
𝑝𝑒𝑣

= 5.67𝜋 =
𝑝𝑐𝑑
𝑝𝑒𝑣

= 8.04

ሶ𝑣𝑐𝑜𝑚𝑝,𝑖𝑛 = 0.083
𝑚3

𝑠
ሶ𝑣𝑐𝑜𝑚𝑝,𝑖𝑛 = 0.130

𝑚3

𝑠

42 % higher for pure methanol

57 % higher for pure methanol
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A ‘sensible sensible’ case study:
LCOH breakdown
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Breakdown of the LCOH



Generalized selection matrix:
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Heat source: Latent
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(Near-) azeotropic mixtures
Flammable:
➢ Mixtures of hydrocarbons (always)
➢ Mixtures of water and hydrocarbons

(medium Tsource)
Non/mildly flammable:
➢ None
Pure fluids
Flammable: 
➢ Acetone, methanol, ethanol (always)
➢ Cyclobutene (low Tsource and Tsink)
Non/mildly-flammable:
➢ Water (high Tsource)
➢ HFOs and HCFOs (low Tsource and Tsink)
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Generalized selection matrix
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Heat source: Sensible

H
ea

t 
si

n
k:
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n
t

Zeotropic mixtures
Flammable: 
➢ Mixtures of hydrocarbons and mixtures 

of hydrocarbons and ammonia (always)
➢ Mixtures of water and hydrocarbons 

(medium Tsource)
Non/mildly-flammable:
➢ Water/ammonia (high Tsource)
Pure fluids
Flammable:
➢ Cyclobutene, Cyclopentane, Cis-2-Butene 

(low Tsink) 
➢ Acetone, Methanol, Ethanol (high Tsink)
Non/mildly-flammable:
➢ Water (high Tsink and Tsource) 
➢ HFOs and HCFOs (low Tsink and Tsource)
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Generalized selection matrix
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Heat source: Latent
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(near-) azeotropic mixtures
Flammable: 
➢ Mixtures of hydrocarbons (high Tsink)
➢ Mixtures of hydrocarbons and water 

or ammonia (high Tsource and high Tsink)
Non/mildly-flammable: 
➢ None
Pure fluids
Flammable:
➢ Cyclobutene and Cis-2-Butene 

(low/medim Tsink)
Non/mildly-flammable:
➢ HFOs and HCFOs (low/medium Tsink) 
➢ Water (high Tsource and Tsink)
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Generalized selection matrix
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Heat source: Sensible

H
ea

t 
si

n
k:

Se
n

si
b

le Zeotropic mixtures
Flammable:
➢ Mixtures of hydrocarbons and 

mixtures of hydrocarbons and 
ammonia (always)

➢ Mixtures of water and hydrocarbons 
(medium Tsource)

Non/mildly-flammable:
Water/ammonia (medium Tsource)

Q

HP

T



Discussion: Limitations to the model

The model: preliminary screening.

Best performing working fluids, (re)consider:
➢Non-fixed heat transfer coefficients.

➢Cost of the refrigerant.

➢Influence of material compatibility or pressure.

➢Off-design behaviour. 

➢Non-fixed isentropic efficiency.

➢Influence of costs related to ATEX compliance. 
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Conclusions

• Investment cost of heat pump cannot be neglected.

• Discrepancy between optimum LCOH and optimum COP.

• Best performing working fluid: case study dependent
➢Often binary mixtures (natural refrigerants): 

❖Favorable temperature matching: COP 

❖Favorable operational conditions: Investment cost

➢Heat sink (large ∆T), heat source (small ∆T):

→Transcritical cycles
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