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Introduction

➢ Current R&D on HTHPs
• High temperature heat pumps (Tsink> 100 ℃) for 

industrial decarbonization
• Majority operates with refrigerant vapor compression 

cycles using electric-driven mechanical compressor

➢ Challenges of high Tsink on mechanical 
compressors in VCHPs
• overheating
• compatibility and stability of the lubricant oil
• risk of wet compression for low GWP refrigerants
• limited drop-in replacement of refrigerants

➢ Opportunities for heat-driven HTHPs 
(HDHPs) using an ejector 
• Supersonic ejector is used as a thermocompressor
• No moving parts for high reliability
• Simple structure for low cost
• Scalable to large systems and multi-stage systems
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Fig. 1 Schematic of thermodynamic cycles of HTHPs.
(a) mechanical compressor, and (b) ejector thermocompressor.

Mechanical 
compressor Ejector



Introduction

➢ State-of-the-art ejector technologies
Ejector refrigeration systems: extensive R&D efforts; attractive with available waste heat or utilizing solar thermal energy; 
Ejector-based HDHPs: open-loop HTHP, limited R&D efforts; 

Europe PUSH2HEAT demo sites: 1) Paper industry in Italy, CHP plant
2) Chemical plant in Spain, absorption heat transformer
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Ejector-based HDHP in Europe PUSH2HEAT project. (a) Paper industry, (b) Chemical industry.

(Source: https://push2heat.eu/demo-sites/)



Introduction

➢ Working fluids in a supersonic ejector
Primary fluid (PF): the motive steam with high temperature/pressure (T&P);
Secondary fluid (SF): the refrigerant vapor with low T&P;
Mixed fluid (MF): saturated vapor with middle T&P.

➢ Potential technical barriers to ejector-based HDHPs 
• Low coefficient of performance (COP)
• Small lift temperature or compression ratio
• Significant performance degradation in “off-design” conditions

➢ Motivation for this study
• Binary fluids for a higher COP of ejector-based HDHPs

𝐶𝑂𝑃HDHP = 1 + 𝜔
ℎ𝑙𝑣,𝑆𝐹

𝛥ℎ𝑠ℎ,𝑃𝐹+ℎ𝑙𝑣,𝑃𝐹
≈ 1 + 𝜔

𝛥ℎ𝑆𝐹
𝛥ℎ𝑃𝐹

, where 𝜔 =
ሶ𝑚𝑆𝐹

ሶ𝑚𝑃𝐹

A higher 𝜔 and/or a larger 
ℎ𝑙𝑣,𝑆𝐹
ℎ𝑙𝑣,𝑃𝐹

yield a higher COP.

• Technical feasibility of ejector-based HDHPs with Tsink> 100 ℃
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HDHP with a Binary Fluid Ejector

➢ Thermodynamic model of an HDHP using a binary fluid ejector
Gravity-based or thermal-based separator for effectively separating the PF and SF.
The thermodynamic model of ejector-based HDHP is built with the conservation of mass and energy.
A gas-dynamic model of ejector predicts the performance of the ejector.
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Fig. 2 Schematic of a heat-driven ejector HTHP. (a) System configuration, (c) p-h diagram.



HDHP with a Binary Fluid Ejector

➢ Gas-dynamic model of the binary fluid ejector
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• Gas dynamic process in an ejector
i->ii, high T/P steam of PF accelerates into a 
supersonic flow, creating a vacuum at the 
nozzle exit plane (NXP).

iv->v, low T/P vapor of SF accelerates into a 
sonic flow at the hypothetical throat;

ii->iii, PF expands in the converging section of 
the mixing chamber;

iii+v->vi, PF and SF mix under a constant pM; 

vi->vii, a normal shock wave occurs, creating a 
compression effect;

vii->viii, mixed PF-SF diffuses in the diffuser. 
*Wang, Pengtao and AbuHeiba, Ahmad and Spitzenberger, Jeremy and Kowalski, Stephen and Ma, Hongbin and Nawaz, Kashif, Thermodynamic Analysis of a Two-Stage Binary-Fluid Ejector Heat Pump Water Heater. Available 
at SSRN: https://ssrn.com/abstract=4155125 or http://dx.doi.org/10.2139/ssrn.4155125

Fig. 2 Schematic of a heat-driven ejector HTHP. 
(b) gas-dynamic process within an ejector.*

https://ssrn.com/abstract=4155125
https://dx.doi.org/10.2139/ssrn.4155125


HDHP with a Binary Fluid Ejector
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• Governing equations
Energy conservation of PF through the primary nozzle, 

ℎiii = 1 − ηN ℎi + ηNℎiii,is , ℎv,is = ℎ(𝑠i, 𝑝𝑖𝑖𝑖), and ℎv,is = ℎ(𝑠iv, 𝑝v).

For the choked SF flow, ℎv,is = ℎ(𝑠iv, 𝑝v) with ηS, and 𝑉v = 𝐶v.

In the mixing process, 𝑝iii = 𝑝v = 𝑝vi = 𝑝M, ϕM= ηM
ϕM ሶ𝑚PF𝑉iii + ሶ𝑚SF𝑉v = ሶ𝑚PF + ሶ𝑚SF 𝑉vi,

ሶ𝑚PF + ሶ𝑚SF ℎvi +
1

2
𝑉vi
2 = ሶ𝑚PF ℎiii +

1

2
𝑉iii
2 + ሶ𝑚SF ℎv +

1

2
𝑉v
2 .

Acrossing the shock wave, 

ρvii𝑉vii = ρvi𝑉vi, 𝑝𝑣𝑖𝑖 + 𝜌𝑣𝑖𝑖𝑉𝑣𝑖𝑖
2 = 𝑝𝑣𝑖 + 𝜌𝑣𝑖𝑉𝑣𝑖

2 , and ℎ𝑣𝑖𝑖 +
1

2
𝑉𝑣𝑖𝑖
2 = ℎ𝑣𝑖 +

1

2
𝑉𝑣𝑖
2 .

In the diffuser, ℎviii,is = ℎvii + ηD
1

2
𝑉vii
2 .

The discharged mixed fluid, 𝑝viii = 𝑝(ℎviii,is, 𝑠viii) and 𝑠viii = 𝑠vii.

• Inputs: Inlet parameter of PF and SF, ሶ𝑚PF, 𝑇i, 𝑝i, 𝑇iv, and 𝑝iv; ejector component efficiency, ηN, ηS, ηM, and ηD.

• Outputs: 𝜔𝑚𝑎𝑥 ( ሶ𝑚PF,max), 𝑇viii and 𝑝viii.



Working fluids for a Binary Fluid Ejector
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➢ Selection criteria for working fluids
• MWPF > MWSF for a high ω;

• hlv,PF << hlv,SF for a high COP;

• Large difference in density for gravity-

driven separation, or large difference in

normal boiling point for thermal-driven

Separation.

➢ Selected working fluids
PF: HFE7500

SF: R718 (water)

Fluids Formula MW NBP [℃] Tcr [℃] Pcr [MPa] hlv* [kJ/kg] ρ [kg/m3] GWP Group

HFE7500 C9H5F15O 414 128.4 261.0 1.55 84.0@140℃ 1,560 90 HFE
R718 H2O 18 99.97 373.9 22.064 2,333@70℃ 1,000 0 Natural 
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P-h diagrams of working fluids for binary fluid ejector.

Table 2. Working Fluids for the ejector-HDHPs.



Performance of Ejector-based HDHPs
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➢ Operating parameters of ejector-driven HDHPs 
Tsink = 100–130°C, ΔTlift = 10–30°C, Tsink = Tsink - ΔTlift ,

THTE = 190–260°C; PHTE,max = 1.5 MPa for HFE7500, and PHTE,max = 4.7 MPa for R718.

ηN = 0.92, ηS = 0.86, ηM = 0.95, and ηD = 0.81.

➢ Performance of HDHPs with 
binary fluid ejectors (BFEs)

Fig. 3 Typical performance of BFEs and BFE-HDHPs. (a) Entrainment ratio and (b) COP.

• Effects of THTE

▪ An optimal generating temperature of 
PF in the HTE, THTE,opt = 240℃, for the 
entrainment ratio, ωBFE.

▪ ωBFE dominates the COP of ejector-
driven HDHPs.

▪ A lower ΔTlift for a higher ωBFE and 
COPHP.



Performance of Ejector-based HDHPs
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➢ Performance of HDHPs with binary fluid ejectors (BFEs)
• The optimum performance of BFEs and BFE-HDHPs

▪ THTE,opt = 240℃ for ωBFE,max

and COPHP,max.

▪ ΔTlift and Tsink significantly 
affect ωBFE,max and COPHP,max.

▪ A lower Tsink and ΔTlift for a 
higher ωBFE,max and COPHP,max.

At ΔTlift = 10 ℃, Tsink=110℃, ωBFE,max = 
0.16, and COPHP,max = 2.48;  

At ΔTlift = 30 ℃, Tsink=130℃, ωBFE,max = 
0.04, and COPHP,max = 1.39.

Fig. 4 The maximum performance of BFEs and BFE-HDHPs.
(a) Maximum entrainment ratio and (b) maximum COP



Performance of Ejector-based HDHPs
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➢ Performance of HDHPs with single fluid ejectors (SFEs)
• SFEs using HFE7500

▪ THTE,opt = 230℃ for 
ωBFE,max and COPHP,max.

▪ A much higher ωBFE,max

but slightly lower 
COPHP,max, compared 
with BFEs.

▪ ωBFE,max and COPHP,max

are less sensitive to 
Tsink, compared with 
BEFs. Fig. 5. The maximum performance of SFEs and SFE-HDHPs with HFE7500. 

(a) Maximum entrainment ratio and (b) maximum COP.



Performance of Ejector-based HDHPs
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➢ Performance of HDHPs with single fluid ejectors (SFEs)
• SFEs using R718

▪ Similar trends 
to SFEs using 
HFE7500.

▪ THTE,opt = 260℃
for ωBFE,max and 
COPHP,max.

▪ ωBFE,max and 
COPHP,max are 
independent on 
Tsink. Fig. 6. The maximum performance of SFEs and SFE-HDHPs with R718.

(a) Maximum entrainment ratio and (b) maximum COP.



Performance of Ejector-based HDHPs
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➢ Comparison of BFEs and SFEs 
• BFEs only give slightly better 

performance at a high ΔTlift

(> 25℃), due to extremely 
low ωBFE,max (< 0.1) in BFEs.

• SFEs operating with R718 
give the best performance 
at a low ΔTlift (< 25℃).

• Ejector-driven HDHPs has 
ηCarnot of 6.7%-10.4% for Tsink

= 120°C and ΔTlift = 10–30°C. 
This is much lower than the 
state-of-the-art HTHPs with 
ηCarnot of 40%-60%.

Fig. 7. Comparation of BFE-HDHPs and SFE-HDHPs.
(a) Maximum entrainment ratio and (b) maximum COP.



Conclusions

▪ The COP of close-loop, ejector-based HDHPs is much lower than that of state-of-art 
VCHPs.

▪ The binary-fluid ejectors (BFEs) are promising to improve the COP of ejector-based 
HDHPs. However, selecting the binary fluid pairs is critical. The benefits of BFE were not 
realized using HFE7500/R718 due to the extremely low entrainment ratio.

▪ Single-Fluid Ejector (SFE) using R718 could be one of the candidates for ejector-driven 
HDHPs. There is a potential for improved performance if an open loop could be 
implemented.

▪ Unique industrial applications of open-loop, ejector-based HDHP systems are required 
to compensate for their low COP.
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ORNL’s Building Technologies Research and Integration Center (BTRIC) is a DOE-
designated national user facility. BTRIC is comprised of 60,000+ ft2 of lab facilities 
conducting RD&D to support the DOE mission to equitably transition America to a 
carbon pollution-free electricity sector by 2035 and carbon free economy by 2050. 
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