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Abstract; Thermally driven sorption systems can provide significant energy savings, 
especially in industrial applications. The driving temperature for operation of such systems 
limits the operating window and can be a barrier for market-introduction. By adding a 
compressor, the sorption cycle can be run using lower waste heat temperatures. 
ECN has recently started the development of such a hybrid heat pump. The final goal is to 
develop a hybrid heat pump for upgrading lower (<100⁰C) temperature industrial waste heat 
to above pinch temperatures. 
The paper presents the first measurements and model calculations of a hybrid heat pump 
system using a silica gel water system combined with a Roots type compressor. From the 
measurements can be seen that the effect of the compressor is dependent on where in the 
cycle it is placed. When placed between the evaporator and the sorption reactor, it has a 
considerable larger effect compared to the compressor placed between the sorption reactor 
and the condenser. The latter hardly improves the performance compared to purely heat-
driven operation. This shows the importance of studying the interaction between all 
components of the system. The model, which shows reasonable correlation with the 
measurements, could proof to be a valuable tool to determine the optimal hybrid heat pump 
configuration. 
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1. INTRODUCTION 
In The Netherlands more than 100 PJ of heat in the refining and chemical industry is actively 
disposed (Spoelstra et al., 2002). More than 40 PJ of this heat has a temperature of more 
than 100°C and can be used in a heat-driven heat pump to upgrade this industrial waste-
heat to useful process heat, thereby reducing the industrial primary energy demand. After a 
review of potential heat pump technologies, a heat pump based on chemisorption of 
ammonia on solid salts was selected for further development at ECN. Industrial waste heat 
with a temperature between 100°C to 150°C can be upgraded to 180°C to 220°C to create 
medium-pressure steam. The sorption cycle is shown schematically in Figure 1 with the 
colored arrows showing the heat flows into (at middle temperature) and out (at ambient and 
high temperature) of the system. 
The temperature lift that can be achieved using this cycle is determined by the chosen 
sorbents and waste heat temperature. The temperature lift decreases with decreasing waste 
heat temperatures. For a single-stage heat pump type II, a waste-heat temperature of more 
than 100°C is required to achieve a temperature lift of 50°C. Multi-stage heat pumps can 
achieve >50°C temperature lifts using lower waste heat temperatures but have poor 
efficiency. A 50°C temperature lift is considered the minimum temperature lift that is required 
for reusing waste heat. For temperature lifts smaller than 50°C, compressors form an 
attractive alternative, both in terms of energy efficiency and economy. 
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Figure 1. Schematic diagram of a heat-driven heat pump type II for upgrading (industrial) heat 
to a higher temperature. The blue and red line show the sorption line of respectively low and 
high temperature sorbent. The colored arrows show heat flows into (at middle temperature) 

and out (at ambient and high temperature) of the system. 
 
About 40 PJ of industrial waste heat in The Netherlands has a temperature between 70°C 
and 100°C. Extending the operating window of the sorption cycle to these lower waste heat 
temperatures would contribute significantly to the efficiency of the industrial energy use in 
The Netherlands. This extension can be achieved by adding a compression step to the cycle. 
This hybrid adsorption – compression cycle is schematically shown in Figure 2. The increase 
in pressure during the discharge phase of the cycle, allows the use of waste heat with a 
lower temperature. Model calculations have shown this hybrid cycle can reduce required 
waste-heat temperature (for a temperature lift of at least 50°C) to as low as 70°C and still 
yield net primary energy savings (van der Pal et al., 2010). 
 

  
Figure 2. Schematic diagram of a hybrid adsorption - compression heat pump for upgrading 

(industrial) heat to a higher temperature. The blue and red line show the sorption line of 
respectively low and high temperature sorbent. The colored arrows show heat flows into (at 

middle temperature) and out (at ambient and high temperature) of the system. 
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In order to make this cycle work, it is required to combine the continuous operation of the 
compressor with the sorption cycle. For solid sorbents, such as the ammonia salts, the latter 
is a batch operation. The combination of a batch-process with the continuous operation of 
the compressor could result in unforeseen problems and/or lower than expected 
performance. The objective of this study is to determine the effects of the hybrid operation, 
and therefore a combination of compressor with a sorption reactor has been tested. 
Although our study (van der Pal et al., 2010) showed the ammonia-salt reactions of CaCl2 
and MnCl2 as most energy efficient, for practical reasons a silica gel-water system was 
tested. 
Unlike ammonia-salt reactions, the adsorption of water vapor to the silica gel is a 
physisorption reaction. The performance of this process depends on an isosteres-field rather 
than the discrete transition between the adsorbed and the desorbed state that is found in 
chemisorption cycles. Also the temperature range the system can be operated is different 
than the foreseen application. Waste-heat with a maximum temperature of 90°C is used to 
create cooling rather than heating. This means the cycle as shown in Figure 1 is operated in 
reverse. In this mode, it is equal to a heat-driven cooling cycle. This paper shows the results 
of the measurements of the heat-driven and hybrid system based on adsorption of water 
vapor on silica gel. To get a better understanding of the measurements, an existing 
adsorption model has been adapted to describe the measurements. Also the model results 
are presented. 
 
 
2. MATERIALS AND METHODS 
Experimental set-up 
The system consists of a condenser, evaporator and a reactor vessel. This setup has been 
described by Boer et al (Boer et al., 2005). The reactor vessel contains a sorption reactor 
consisting of four silica gel filled plate-fin heat exchangers (Grisel et al., 2010). Each heat 
exchanger contains 1.5 kg of silica gel, so the sorption reactor contains 6 kg of silica gel in 
total. A heating and cooling rig is used to provide the sorption reactor, condenser and 
evaporator with water at the desired temperature. During the regeneration phase of the cycle 
the sorption reactor is heated to high temperature (60 to 90oC) while the condenser is kept at 
ambient temperature. During the discharge phase of the cycle the sorption reactor is cooled 
down to ambient and the evaporator kept at desired cooling temperature. Valves with a timer 
are used to switch between the two phases. By measuring the temperature of the water 
entering and leaving the components (evaporator, condenser and sorption reactor) and its 
flow rate, the amount of heat consumed or released can be calculated. Furthermore the 
temperatures and pressures inside the components are measured. 
The compressor, type Falco WY1000B from Busch Ltd, is a roots-type compressor that 
provides a volume flow of up to 1200 m3h-1. The frequency of the compressor is controlled 
by a Vacon NXL frequency controller and can be varied between 0 and 60 Hz. The 
maximum power consumption is 3 kW electricity and is monitored with a Sineax P530 power 
meter. The compressor has a leak rate of less than 1.10-6 mbar.l.s-1. On the gas side of the 
compressor, the pressure and the temperature of the compressed gas are measured. 
 
Measurements 
The following four configurations (see Figure 3) were used in the measurements: 

1) In configuration 1, the compressor is placed between the condenser and the 
evaporator. The performance of this regular compressor cycle is determined for a 
temperature of 10°C and 20°C on respectively the evaporator and the condenser. 
The frequency of the compressor was varied in 5 Hz steps between 15 and 30 Hz; 

2) In configuration 2, the system contains the condenser, evaporator and the sorption 
reactor. The performance of this pure heat-driven system is determined. The 
conditions were identical to those in the measurements of the hybrid configurations; 
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3) In configuration 3, all components are used. The compressor is placed between the 
evaporator and the sorption reactor. Its effect on the discharge phase of the cycle is 
measured. The temperature of the evaporator and condenser are kept at respectively 
12°C and 35°C whilst the sorption reactor cycled in 2x6 minute intervals between 
35°C and 85°C. The compressor frequency was set to 30 Hz; 

4) In configuration 4, all components are used. The compressor is placed between the 
sorption reactor and the condenser. Its effect on the regeneration phase of the cycle 
is measured. The temperature of the evaporator and condenser are kept at 
respectively 12°C and 26°C whilst the sorption reactor cycled in 2x6 minute intervals 
between 26°C and 71°C. The compressor frequency was set to 30Hz. 

 
 
 

    
 
 

 
Figure 3. The four configurations for measuring system performance: 1 - continuous ‘standard’ 

compression, 2 - purely heat-driven sorption system, 3 - hybrid system with compression at 
low pressure and 4 – hybrid system with compression at high pressure. 

 
Model calculations 
For the model calculations, an adapted version of the Matlab-Simulink model developed by 
the University of Valencia (Verde et al., 2010) was used. This model originally described the 
heat and mass transfer in a zeolite-water vapor sorption heat pump for automobile 
applications. The model is a transient model with (among others) the following assumptions: 

• Non-equilibrium conditions with a simple kinetic model 
• Zero-dimensional (i.e. uniform temperature distribution in each operating unit). 
• The pressure at the sorption reactor depends on the instantaneous mass of vapor 

contained inside. 
• The flow of water vapor between the sorption reactor, the condenser and evaporator 

is governed by the pressure difference between them and the position of the valves. 
• The heat exchangers are characterized by their global UA value (W/K). For the 

sorption reactor heat exchangers, a detailed analytical study was carried out in order 
to estimate an adequate UA value depending on the sorbent thermal properties as 
well as the geometrical characteristics of the sorption reactor. 

A detailed description of the model can be found here (Verde et al., 2010). 
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To use the model for our measurements, some changes in the model were required. These 
include: 

• The original model used two sorption reactors to provide continuous cooling. The 
measurements were conducted on 1 sorption reactor. Therefore the number of active 
sorption reactors was reduced to one by setting the vapor flow to the second sorption 
reactor to zero; 

• The isosteres data for zeolite were substituted with the data of the silicagel isosteres 
(Restuccia et al., 1999); 

• The dimensions of the automobile sorption reactor were substituted with the 
dimensions of the sorption reactor based on the four plate-fin heat exchangers; 

• The thermal masses of the sorption reactor were adapted to current system; 
• The evaporator and condenser properties were adapted to current system. 

To use the model for hybrid operation, some additional changes were made. The pressure 
step created by the compressor was used as a transient input parameter for the model 
calculations. Depending on the configuration, this pressure step was set between the 
evaporator and the sorption reactor (configuration 3) or the sorption reactor and the 
condenser (configuration 4). Because the pressure step was a set parameter, the flow 
resistance between the components was set (close to) zero. Also, the original model would 
directly connect the condenser and evaporator in case the pressure of the condenser is 
lower than in the evaporator. This option was disabled for the (hybrid) system because such 
shortcut was not made in the measurements. 
 
 
3. RESULTS 
Measurement results 
Figure 4 shows the results of the measurements with the compressor between the 
evaporator and condenser (configuration 1). The trends are according to expectations. The 
power used by the compressor increases with frequency. The increase in frequency also 
results in higher pressure ratios and increased condenser and chilling power. The 
compressed gas temperature also rises. This is due to both increased pressure ratio (= ratio 
pressure discharge/suction gas) as well as increased volume flow. For an adiabatic process, 
the latter should not affect the compressed gas temperature. In practice, however, the gas 
loses a considerable amount of its heat before its temperature is measured. The overall 
electric efficiency of the compressor is low: the COPelectric (ratio of chilling power/compressor 
power) is about 1.5 at 30 Hz operation. This is likely due to the poor properties of water 
vapor as refrigerant under given conditions and the Roots-type compressor, which is not 
energy efficient. 
Table 1 shows the results for hybrid operation with compressor between evaporator and 
sorption reactor compared to heat-driven operation. The COPthermal is defined as the amount 
of heat extracted by the evaporator divided by the amount of heating required for the 
regeneration of the reactor (at Theating). The COPelectric is defined as the amount of heat 
extracted by the evaporator divided by the amount of electricity consumed. The compressor 
has a significant effect on the performance compared to the heat-driven system. The chilling 
power increases from 0.7 kW to 1.2 kW and the - for heat loss corrected - thermal efficiency 
(COPthermal) increases from 0.41 to 0.59. 
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Figure 4. The compressed gas temperature, compressor power, condenser power and 

pressure ratio as a function of the compressor frequency for condenser and evaporator 
temperatures of respectively 20°C and 10°C. 

 
Table 1. Results for hybrid operation with compressor between evaporator and sorption 
reactor (configuration 3) compared to heat-driven operation (configuration 2). 

 heat-driven hybrid configuration 3
Theating (°C) 84.7 84.6 
Tcooling (°C) 35.1 35.3 
Tevaporator (°C) 12.6 11.7 
pressure ratio 1.0 1.5 
power compressor (kW) 0 0.9 
chilling power (kW) 0.7 1.2 
COPthermal 0.41 0.59 
COPelectric na 1.3 

 
Table 2 shows the results for hybrid operation with compressor between sorption reactor and 
condenser compared to heat-driven operation. The effect of the compressor seems only to 
be reflected in the increased pressure ratio and the compressor power. Despite this 
considerable effect on the pressure levels, no significant effect on the chilling power is 
observed and there is only a slight increase in thermal efficiency. This effect could possibly 
be explained by a reduced thermal conductivity of the reactor bed (van der Pal et al., 2011). 
Although the performance of this system is very poor for generating cooling in terms of 
COPthermal as well as COPelectric, one needs to bear in mind that the goal of these 
measurements is not to create an efficient cooling system. It is a first step in the 
development of a hybrid heat pump for upgrading waste heat to useful process heat that will 
use ammonia and salts rather than water vapor and silica-gel. 
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Table 2. Results for hybrid operation with compressor between sorption reactor and 
condenser (configuration 4) compared to heat-driven operation (configuration 2). 

 heat-driven hybrid configuration 4
Theating (°C) 71.4 71.3 
Tcooling (°C) 26.2 26.2 
Tevaporator (°C) 12.3 12.3 
pressure ratio 1.0 2.9 
power compressor (kW) 0 1.1 
chilling power (kW) 1.0 1.0 
COPthermal 0.32 0.33 
COPelectric na 0.9 

 
 
Model calculations 
The measured and calculated temperatures, pressures and thermal powers for the heat-
driven operation are shown in respectively Figure 5, Figure 6, and Figure 7. Figure 5 shows a 
good correlation between the measurements and the model calculations. Only some 
deviations are found around when switching between the discharge and the regeneration 
phase. The good correlation is somewhat deceiving: to achieve large deviations in out-going 
temperatures, the amount of heat released or adsorbed by the components must increase 
considerably. 
More information can be obtained from the pressure as a function of time as shown in Figure 
6. For the evaporator pressure and the sorption reactor pressure during the low pressure 
part of the cycle, a good correlation is found between measured values and calculated 
values. For the pressure in the condenser and the sorption reactor during the high pressure 
part of the cycle, the correlation is not as good. It can also be observed that the measured 
pressure in the condenser increases each cycle whilst the model value remains constant. 
This suggests an increasing presence of non-condensables in the condenser. 
 
 

 
Figure 5. Heat-driven operation: the temperature from the measurement and model 

calculations of the condenser, evaporator and sorption reactor as a function of time. 
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explained by differences in the amount of thermal mass and/or its temperature variation, 
which might be related to the uniform temperature assumption of the model. Despite the 
differences, the calculated evaporator (cooling) and condenser (heating) powers are close to 
the measured values. 
A better correlation between model calculations and measurements could be obtained by 
tweaking the input parameters such as the thermal mass. However, to be able to use the 
model as a tool for accurately predicting the performance of a heat-driven and/or hybrid heat 
pump, it is recommended to look into the effect of the model assumptions on the calculations. 
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